A superior composite material consisting of MXene and ruthenium dioxide-modified carbon cloth is synthesized by pulsed laser deposition and electrostatic self-assembly, which is further utilized to construct a class of novel electrochemical (EC) sensors for kaempferol (KA) detection. The carbon-cloth-based electrodes modified by ruthenium dioxide and then MXene are characterized by X-ray diffraction, scanning electron microscope, and X-ray photoemission spectroscopy. The EC process on the modified electrodes is analyzed by cyclic voltammetry, EC impedance spectroscopy, and differential pulse voltammetry. It is found that positively charged RuO not only possesses the remarkable electrical conductivity and electrocatalysis activity but also hampers the restacking of MXene, which accordingly enhances the exposure of the active surface area and greatly boosts the electrocatalysis activity of the entire composite. Consequently, this newly developed composite-based EC sensor exhibits a high sensitivity, selectivity, and remarkable stability to detect KA with two linear ranges of 0.06-1 and 1-15 µM. The inferred limit of detection is 0.039 µM via differential pulse voltammetry. More importantly, this novel EC sensor is found to be applicable for detecting KA in practical traditional Chinese medicines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202301709 | DOI Listing |
Anal Methods
January 2025
Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
The unreasonable use of organic dye leads to excessive residues in environmental water, which seriously threatens human health and the natural environment. In this paper, a spherical flower-like magnetic FeO@CoNi layered double hydroxide@silver nanoparticle (FeO@CoNi LDH@Ag NPs) SERS substrate was successfully fabricated electrostatic self-assembly and applied for the sensitive detection of methylene blue (MB) in environmental water. The rapid concentration and separation of the SERS substrate from the water sample could be achieved using an external magnet.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
To develop stable polysaccharide-based emulsions, many studies have focused on the interfacial behavior of adsorbed polysaccharides. This review first discussed the mechanism of polysaccharides self-assembly at the oil-water interface. It can be concluded that polysaccharides can form a thick and strong interfacial membrane that stabilizes emulsions through steric hindrance and electrostatic interactions.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
It is crucial to comprehend protein misfolding and aggregation in the domains of biomedicine, pharmaceuticals, and proteins. Amyloid fibrils are formed when proteins misfold and assemble, resulting in the debilitating illness known as "amyloidosis". This work investigates lysozyme fibrillation with pluronics (F68 and F127).
View Article and Find Full Text PDFSubcell Biochem
December 2024
Department of Physics of the Condensed Matter, Universitat de Barcelona, Barcelona, Spain.
All matter must obey the general laws of physics and living matter is not an exception. Viruses have not only learnt how to cope with them but have managed to use them for their own survival. In this chapter, we will review some of the exciting physics that are behind viruses and discuss simple physical models that can shed some light on different aspects of the viral life cycle and viral properties.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry, University of Birjand, Birjand, 9717434765, Iran.
Herein, we discuss the structure-function of biomimetic imidazole-quartet substrates (I-quartets) obtained through the adaptive self-assembly of octyl-ureido-polyol structures in polyamide membranes designed as adsorbents. Molecular dynamics (MD) and well-tempered metadynamics simulations are utilized to examine ion contaminants' adsorption process and dynamic behaviors onto alkylureido-ethylimidazoles with well-defined supramolecular structures. Moreover, the atoms-in-molecules (AIM) analysis identified multiple types of atomic interactions between the contaminant molecules and the substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!