Surface plasmon resonance (SPR) is an optical technique that is utilized for detecting molecular interactions that occur in direct protein-protein interactions. Binding of a mobile molecule (analyte) to a molecule immobilized on a thin metal film (ligand) changes the refractive index of the film. The angle of extinction of light that is completely reflected, after polarized light impinges upon the surface, is altered and monitored as a change in detector position for a dip in reflected intensity (the surface plasmon resonance phenomenon). Because the method strictly detects mass, there is no need to label the interacting components, thus eliminating possible changes of their molecular properties. One of the advantages in SPR is its high sensitivity, compatible with the need for purification of small amounts of protein for analysis. This chapter concentrates on practical methodologies for performing surface plasmon resonance analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3147-8_19 | DOI Listing |
ACS Nano
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
In the field of organic electronics and optics, there is rapidly growing interest in enhancing both charge transport and the ion transport properties of semiconductors, particularly in light of recent emerging technologies such as organic electrochemical transistors (OECTs) and switchable organic nanoantennas. Herein, we propose a universal method for internalizing the ionic transport properties of conventional polymer semiconductors. The incorporation of a tetrafluorophenyl azide-based photochemical cross-linker with a tetraethylene glycol bridge into poly(3-hexylthiophene) (P3HT) significantly enhances the performance and operational stability of ion-gating devices.
View Article and Find Full Text PDFPhytomedicine
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China. Electronic address:
Background: Radix Bupleuri (RB) and acetaminophen (APAP) are two popular medications having potential hepatotoxicity and substantial risks of irrational co-administration and excessive use, posing an overlooked danger of drug-induced liver injury (DILI). Autophagy is a protective mechanism against APAP-induced DILI, yet, saikosaponin d (SSd) in RB has been characterized to regulate autophagy, although the current findings are controversial.
Purpose: We aim to elucidate whether SSd promoted APAP-induced liver injury by regulating autophagy.
J Opt Soc Am A Opt Image Sci Vis
August 2024
On the heels of the continuous development of optical fiber sensing technology, optical fiber sensors based on surface plasmon resonance (SPR) have attracted widespread attention. Herein, an SPR sensor based on the six nested anti-resonant fiber (ARF) is designed and analyzed by the finite element method (FEM). All the structural parameters are optimized to achieve high-sensitivity liquid refractive index detection.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2024
A symmetrical dual-D and dual-core single-mode fiber surface plasmon resonance (SPR) liquid sensor is designed for biological detection. The dual-core design optimizes the transmission path, improves the momentum matching between free electrons and photons, and facilitates bidirectional coupling, consequently amplifying the SPR effect and enabling sensitive monitoring of the refractive index changes of biological solutions. In this structure, a gold wire is placed in the middle of the polished surface of the double-D-shaped single-mode fiber (SMF) to produce high-quality free electrons and promote the mode-coupling excitation of the SPR effect.
View Article and Find Full Text PDFmSphere
January 2025
School of Medicine, Southern University of Science and Technology, Shenzhen, China.
The universal bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays critical roles in regulating a variety of bacterial functions such as biofilm formation and virulence. The metabolism of c-di-GMP is inversely controlled by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs). Recently, increasing studies suggested that the protein-protein interactions between DGCs/PDEs and their partners appear to be a common way to achieve specific regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!