E6 Tagged Protein Production, Extraction, and Purification from Escherichia coli Lysate.

Methods Mol Biol

CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.

Published: April 2023

Cervical cancer has been extensively associated with human papillomavirus (HPV) due to the expression of oncoproteins such as E6. This protein can interfere with p53 tumor suppressor activity, blocking apoptosis of abnormal cells. The functional inhibition of E6 protein is a promising therapeutic strategy for HPV-induced cancers. Conducting biointeraction and characterization studies between E6 protein and potential anti-HPV drugs is necessary to obtain large quantities of high-purity and soluble E6 protein. The recombinant production of E6 protein is particularly challenging because it tends to aggregate. One way to circumvent this problem is to use a dual MBP-His tag that can facilitate the expression, proper folding, and solubility of the E6 protein. This chapter outlines effective methods for expressing and obtaining E6 protein with a dual affinity tag by combining different chromatographic methods.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3147-8_2DOI Listing

Publication Analysis

Top Keywords

protein
7
tagged protein
4
protein production
4
production extraction
4
extraction purification
4
purification escherichia
4
escherichia coli
4
coli lysate
4
lysate cervical
4
cervical cancer
4

Similar Publications

A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1.

Proc Natl Acad Sci U S A

January 2025

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.

Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.

View Article and Find Full Text PDF

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

Learning the language of antibody hypervariability.

Proc Natl Acad Sci U S A

January 2025

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.

Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!