Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to substantial consumption and widespread contamination of the available freshwater resources, green, economical, and sustainable water recycling technologies are urgently needed. Recently, Faradic capacitive deionization (CDI), an emerging desalination technology, has shown great desalination potential due to its high salt removal ability, low consumption, and hardly any co-ion exclusion effect. However, the ion removal mechanisms and structure-property relationships of Faradic CDI are still unclear. Therefore, it is necessary to summarize the current research progress and challenges of Faradic CDI. In this review, the recent progress of Faradic CDI from five aspects is systematically reviewed: cell architectures, desalination mechanisms, evaluation indicators, operation modes, and electrode materials. The working mechanisms of Faradic CDI are classified as insertion reaction, conversion reaction, ion-redox species interaction, and ion-redox couple interaction in the electrolytes. The intrinsic and desalination properties of a series of Na and Cl capturing materials are described in detail in terms of design concepts, structural analysis, and synthesis modulation. In addition, the effects of different cell architectures, operation modes, and electrode materials on the desalination performance of Faradic CDI are also investigated. Finally, the work summarizes the challenges remaining in Faradic CDI and provides the prospects and directions for future development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202300253 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!