A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recent Progress and Challenges in Faradic Capacitive Desalination: From Mechanism to Performance. | LitMetric

Recent Progress and Challenges in Faradic Capacitive Desalination: From Mechanism to Performance.

Small

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.

Published: August 2023

Due to substantial consumption and widespread contamination of the available freshwater resources, green, economical, and sustainable water recycling technologies are urgently needed. Recently, Faradic capacitive deionization (CDI), an emerging desalination technology, has shown great desalination potential due to its high salt removal ability, low consumption, and hardly any co-ion exclusion effect. However, the ion removal mechanisms and structure-property relationships of Faradic CDI are still unclear. Therefore, it is necessary to summarize the current research progress and challenges of Faradic CDI. In this review, the recent progress of Faradic CDI from five aspects is systematically reviewed: cell architectures, desalination mechanisms, evaluation indicators, operation modes, and electrode materials. The working mechanisms of Faradic CDI are classified as insertion reaction, conversion reaction, ion-redox species interaction, and ion-redox couple interaction in the electrolytes. The intrinsic and desalination properties of a series of Na and Cl capturing materials are described in detail in terms of design concepts, structural analysis, and synthesis modulation. In addition, the effects of different cell architectures, operation modes, and electrode materials on the desalination performance of Faradic CDI are also investigated. Finally, the work summarizes the challenges remaining in Faradic CDI and provides the prospects and directions for future development.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202300253DOI Listing

Publication Analysis

Top Keywords

faradic cdi
24
progress challenges
8
faradic
8
challenges faradic
8
faradic capacitive
8
cell architectures
8
operation modes
8
modes electrode
8
electrode materials
8
cdi
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!