Inappropriate antibiotic prescriptions are common for patients with upper respiratory tract infections (URTIs). Few data exist regarding the effects of antibiotic administration on airway microbiota among healthy adults. We conducted a randomized, double-blind, placebo-controlled trial to characterize the airway microbiota longitudinally in healthy adults using 16S rRNA gene sequencing and quantification. Both the induced sputum and oral wash samples were collected over a 60-day period following a 3-day intervention with 500 mg azithromycin or placebo. Environmental information, including air quality data (particulate matter [PM] and PM, air quality index [AQI] values), were also collected during the study. A total of 48 healthy volunteers were enrolled and randomly assigned into two groups. Azithromycin did not alter bacterial load but significantly reduced species richness and Shannon index. Azithromycin exposure resulted in a decrease in the detection rate and relative abundance of different genera belonging to , Leptotrichia, Fusobacterium, Neisseria, and Haemophilus. In contrast, the relative abundance of taxa belonging to Streptococcus increased immediately after azithromycin intervention. The shifts in the diversity of the microbiology composition took between 14 and 60 days to recover, depending on the measure used: either UniFrac phylogenetic distance or α-diversity. Outdoor environmental perturbations, especially the high concentration of PM, contributed to novel variability in microbial community composition of the azithromycin group at D30 (30 days after baseline). The network analysis found that azithromycin altered the microbial interactions within airway microbiota. The influence was still obvious at D14 when the relative abundance of most taxa had returned to the baseline level. Compared to the sputum microbiota, oral cavity microbiota had a different pattern of change over time. The induced sputum microbial data can represent the airway microbiota composition in healthy adults. Azithromycin may have transient effects in the airway microbiota of healthy adults and decrease the airway microbiota resilience against outdoor environmental stress. The influence of azithromycin on microbial interactions is noteworthy, although the airway microbiota has returned to a near-baseline level. The influence of antibiotic administration on the airway microbiota of healthy adults remains unknown. This study is a randomized, double-blind, placebo-controlled trial aiming to investigate the microbial shifts in airways after exposure to azithromycin among heathy adults. We find that azithromycin changes the airway microbial community composition of healthy adults and decreases the airway microbiota resilience against outdoor environmental stress. This study depicts the longitudinal recovery trajectory of airway microbiota after the antibiotic perturbation and may provide reference for appropriate antibiotic prescription.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269807 | PMC |
http://dx.doi.org/10.1128/spectrum.02066-22 | DOI Listing |
Mycoses
January 2025
Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement Des Infections, CHU Henri Mondor, Assistance Publique Des Hôpitaux de Paris (APHP), Creteil, France.
Background: The airways of patients with cystic fibrosis (pwCF) harbour complex fungal and bacterial microbiota involved in pulmonary exacerbations (PEx) and requiring antimicrobial treatment. Descriptive studies analysing bacterial and fungal microbiota concomitantly are scarce, especially using both culture and high-throughput-sequencing (HTS).
Objectives: We analysed bacterial-fungal microbiota and inter-kingdom correlations in two French CF centres according to clinical parameters and antimicrobial choices.
Toxicology
January 2025
National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China. Electronic address:
The environmental impact of harmful particles from tire and brake systems is a growing concern. This study investigated the health impacts of PM emissions from brake pad wear on adult C57BL/6 mice. The mice were exposed to brake pad particles via intratracheal infusion, and various health parameters were assessed.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya.
The lung environment harbours a community of microbes that play a significant role in health and disease, including innate protection against pathogenic microorganisms. Infection with Mycobacterium tuberculosis, psychological stress associated with the tuberculosis (TB) disease, and the metabolites from the rifampicin treatment regimen have been reported to induce hyperglycemia and consequently type 2 diabetes mellitus (T2DM) in individuals not previously diabetic. The high glucose concentration is proposed to alter the composition of the lung microbiota and airway homeostasis, exerting an influence on TB disease and treatment outcomes.
View Article and Find Full Text PDFNutrients
December 2024
Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
Asthma (a chronic inflammatory disease of the airways) is characterized by a variable course, response to treatment, and prognosis. Its incidence has increased significantly in recent decades. Unfortunately, modern lifestyle and environmental factors contribute to the further increase in the incidence of this disease.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
Traffic-related air pollution (TRAP) has been linked with numerous respiratory diseases. Recently, lung microbiome is proposed to be characterized with development and progression of respiratory diseases. However, the underlying effects of TRAP exposure on lung microbiome are rarely explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!