A full-field X-ray fluorescence imaging (FXI) station was recently developed at beamline BL8 of Synchrotron Light Research Institute (SLRI), Thailand. An unfocused, synchrotron X-ray beam from the bending magnet with a size of 2 mm (vertical) × 13 mm (horizontal) and photon energy of 10 keV was employed in the FXI experiments. A sample stage was tilted by 7.5° to enlarge the vertical beam size. X-ray fluorescence images were recorded by an energy-dispersive, 256 × 256 array, pn-type charge coupled device detector equipped with a polycapillary optics, providing a full-frame image size of 12.3 mm × 12.3 mm. The incident photon flux per pixel was 3 × 10 photons s (100 mA) and the experimental spatial resolution was 68 µm. Image processing was carried out offline using an in-house MATLAB program capable of elemental selection and inhomogeneity intensity correction. Elemental detection limits of FXI were found to decrease with increasing atomic number, i.e. 0.3 to 0.03 wt% for Z = 19 (K) to 30 (Zn). Compared with the BL6b microbeam imaging (µXI) station at SLRI with higher photon flux per pixel, 3 × 10 photons s (100 mA), a tenfold sample area can be obtained and 13 times higher peak-to-background (PKB) ratio at Zn K measured with the same experimental time (8 h). Simultaneous measurement of FXI is more time-efficient against the long overhead times of µXI scanning over large pixel numbers, >65000. To demonstrate potential applications of the new FXI station, various types of samples were examined: dendritic limestone, ancient bronze and dried fish. Analyzed elemental images enabled us to identify areas rich in Mn on the limestone, Sn and Cu separation in the bronze, and Zn nutrition in the dried fish eye.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161892 | PMC |
http://dx.doi.org/10.1107/S1600577523002722 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!