AI Article Synopsis

Article Abstract

D-α-tocopherol polyethylene glycol succinate (TPGS) has good biocompatibility, low immunogenicity, prolonged circulation time, and it can reverse multidrug resistance of tumours. However, the micelle concentration (CMC) of TPGS is too high (0.2 mg/mL) to develop the formulation of the micelle. In this study, TPGS was modified with cholesterol to obtain a new carrier material, TPGS-CHMC. The CMC of TPGS-CHMC was 2 μg/mL, which was extremely lower than that of TPGS. Docetaxel (DTX)-loaded TPGS-CHMC micelles (TPGS-CHMC/DTX) exhibited an average size of approximately 13 nm, a zeta potential of approximately -4.66 mV, and high encapsulation efficiency (99.2 ± 0.6%). TPGS-CHMC reduced mitochondrial membrane potential and cell membrane fluidity in paclitaxel-resistant ovarian cancer cells (A2780/T). , DiR-loaded TPGS-CHMC micelles were selectively distributed in A2780/T tumour-bearing nude mice. In A2780/T tumour-bearing nude mice, TPGS-CHMC/DTX micelles displayed significantly higher anti-tumour activity and less toxicity than the free DTX solution. In summary, TPGS-CHMC has various advantages and provides a new option for developing functional polymeric micelles.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1061186X.2023.2205614DOI Listing

Publication Analysis

Top Keywords

reverse multidrug
8
multidrug resistance
8
resistance tumours
8
tpgs-chmc micelles
8
a2780/t tumour-bearing
8
tumour-bearing nude
8
nude mice
8
tpgs-chmc
6
tpgs
5
novel micellar
4

Similar Publications

Multidrug resistance (MDR) facilitates tumor recurrence and metastasis, which has become a main cause of chemotherapy failure in clinical. However, the current therapeutic effects against MDR remain unsatisfactory, mainly hampered by the rigid structure of drug-resistant cell membranes and the uncontrolled drug release. In this study, based on a sequential drug release strategy, we engineered a core-shell nanoparticle (DOX-M@CaP@ATV@HA) depleting cholesterol for reverse tumor MDR.

View Article and Find Full Text PDF

Expanding the Chemical Space of Reverse Fosmidomycin Analogs.

ACS Med Chem Lett

January 2025

Institute of Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.

Multidrug-resistant pathogens pose a major threat to human health, necessitating the identification of new drug targets and lead compounds that are not susceptible to cross-resistance. This study demonstrates that novel reverse thia analogs of the phosphonohydroxamic acid antibiotic fosmidomycin inhibit 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), an essential enzyme for , , and that is absent in humans. Some novel analogs with large α-phenyl substituents exhibited strong inhibition across these three DXR orthologues, surpassing the inhibitory activity of fosmidomycin.

View Article and Find Full Text PDF

Study on the Chemical Composition and Multidrug Resistance Reversal Activity of (Euphorbiaceae).

Int J Mol Sci

January 2025

Key Laboratory of Xinjiang Phytomedicine Resource and Uilization, Ministry of Education, Shihezi 832002, China.

belongs to the family Euphorbiaceae and is widely distributed in northern Xinjiang, making it a characteristic plant of the region in Xinjiang, China. The chemical composition and biological activity of have not yet been reported, although certain compounds isolated from plants in Xinjiang, China, have demonstrated exceptional multidrug resistance (MDR) reversal. This study aims to investigate the chemical components present in with the potential to reverse MDR.

View Article and Find Full Text PDF

Development of a novel multi-epitope subunit mRNA vaccine candidate to combat Acinetobacter baumannii.

Sci Rep

January 2025

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

Acinetobacter baumannii, an opportunistic bacterium prevalent in various environment, is a significant cause of nosocomial infections in ICUs. As the causative agent of pneumonia, septicemia, and meningitis, A. baumannii typically exhibits multidrug resistance and is associated with poor prognosis, thus led to a challenge for researchers in developing new treatment and prevention methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!