Minimal Molecular Building Blocks for Screening in Quasi-Two-Dimensional Organic-Inorganic Lead Halide Perovskites.

Nano Lett

Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, United States.

Published: May 2023

Layered hybrid organic-inorganic lead halide perovskites have intriguing optoelectronic properties, but some of the most interesting perovskite systems, such as defective, disordered, or mixed perovskites, require multiple unit cells to describe and are not accessible within state-of-the-art theoretical approaches for computing excited states. The principal bottleneck is the calculation of the dielectric matrix, which scales formally as (). We develop here a fully approximation for the dielectric matrix, known as IPSA-2C, in which we separate the polarizability of the organic/inorganic layers into minimal building blocks, thus circumventing the undesirable power-law scaling. The IPSA-2C method reproduces the quasi-particle band structures and absorption spectra for a series of Ruddlesden-Popper perovskites to high accuracy, by including critical nonlocal effects neglected in simpler models, and sheds light on the complicated interplay of screening between the organic and inorganic sublattices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c00082DOI Listing

Publication Analysis

Top Keywords

building blocks
8
organic-inorganic lead
8
lead halide
8
halide perovskites
8
dielectric matrix
8
minimal molecular
4
molecular building
4
blocks screening
4
screening quasi-two-dimensional
4
quasi-two-dimensional organic-inorganic
4

Similar Publications

Ni-Catalyzed Enantioselective Desymmetrization: Development of Divergent Acyl and Decarbonylative Cross-Coupling Reactions.

J Am Chem Soc

January 2025

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Ni-catalyzed asymmetric reductive cross-coupling reactions provide rapid and modular access to enantioenriched building blocks from simple electrophile precursors. Reductive coupling reactions that can diverge through a common organometallic intermediate to two distinct families of enantioenriched products are particularly versatile but underdeveloped. Here, we describe the development of a bis(oxazoline) ligand that enables the desymmetrization of -anhydrides.

View Article and Find Full Text PDF

Platform chemicals from renewable resources with broad applications are highly desirable, particularly for replacing fossil-based monomers. Bifunctional aliphatic ester-aldehydes, accessible via regioselective hydroformylation of unsaturated oleochemicals, can be converted into linear ω-amino/ω-hydroxy esters and dicarboxylic acids-key building blocks for biobased aliphatic polycondensates. However, their success hinges on efficient, economically viable production, with catalyst recycling being critical.

View Article and Find Full Text PDF

A highly electron-rich S,N heteroacene building block is developed and condensed with FIC and Cl-IC acceptors to furnish CT-F and CT-Cl, which exhibit near-infrared (NIR) absorption beyond 1000 nm. The C-shaped CT-F and CT-Cl self-assemble into a highly ordered 3D intermolecular packing network via multiple π-π interactions in the single crystal structures. The CT-F-based organic photovoltaic (OPV) achieved an impressive efficiency of 14.

View Article and Find Full Text PDF

Protein Fusion of Biosynthetic Enzymes and a Thermo-Responsive Polypeptide Expedites Facile Access to Biocatalysts for Nucleotide Sugars.

Chembiochem

January 2025

Shandong University - Qingdao Campus, National Glycoengineering Research Center, Room 230, Ganchang Yard F Block, Qingdao campus of Shandong University, 72 Binhai Road,, Jimo District, Qingdao, Shandong, 266237 China, 266237, Qingdao, CHINA.

Nucleotide sugars (NSs) are essential building blocks for the enzymatic assembly of glycans. In this study, we established a preparation and recycling avenue to the biocatalysts for the enzymatic synthesis of NSs. This approach involves fusing two enzymes into a bifunctional chimera and using elastin-like polypeptides (ET64) as a purification tag, which allows for easy recovery of these biocatalysts without the need for chromatography.

View Article and Find Full Text PDF

N-oxide-Functionalized Bipyridines as Strong Electron-Deficient Units to Construct High-Performance n-Type Conjugated Polymers.

Adv Sci (Weinh)

January 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China.

Developing low-cost unipolar n-type organic thin-film transistors (OTFTs) is necessary for logic circuits. To achieve this objective, the usage of new electron-deficient building blocks with simple structure and easy synthetic route is desirable. Among all electron-deficient building units, N-oxide-functionalized bipyridines can be prepared through a simple oxidized transformation of bipyridines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!