Length-Dependent Enantioselectivity of Carbon Nanotubes by Gel Chromatography.

ACS Nano

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

Published: May 2023

High-purity enantiomer separation of chiral single-wall carbon nanotubes (SWCNTs) remains a challenge compared with electrical type and chirality separations due to the limited selectivities for both chirality and handedness, which is important for an exploration of their properties and practical applications. Here, we performed length fractionation for enantiomer-purified SWCNTs and found a phenomenon in which the enantioselectivities were higher for longer nanotubes than for shorter nanotubes due to length-dependent interactions with the gel medium, which provided an effective strategy of controlling nanotube length for high-purity enantiomer separation. Furthermore, we employed a gentler pulsed ultrasonication instead of traditional vigorous ultrasonication for preparation of a low-defect long SWCNT dispersion and achieved the enantiomer separation of single-chirality (6,5) SWCNTs with an ultrahigh enantiomeric purity of up to 98%, which was determined by using the linear relationship between the normalized circular dichroism intensity and the enantiomeric purity. Compared with all results reported previously, the present enantiomeric purity was significantly higher and reached the highest level reported to date. Due to the ultrahigh selectivity in both chirality and handedness, the two obtained enantiomers exhibited perfect symmetry in their circular dichroism spectra, which offers standardization for characterizations and evaluations of SWCNT enantiomers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c12853DOI Listing

Publication Analysis

Top Keywords

enantiomer separation
12
enantiomeric purity
12
carbon nanotubes
8
high-purity enantiomer
8
chirality handedness
8
circular dichroism
8
length-dependent enantioselectivity
4
enantioselectivity carbon
4
nanotubes
4
nanotubes gel
4

Similar Publications

Development of a Combined 2D-MGD TLC/HPTLC Method for the Separation of Terpinen-4-ol and α-Terpineol from Tea Tree, , Essential Oil.

Biomolecules

January 2025

United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA.

Tea tree oil (TTO), acquired from (Maiden & Betche) Cheel, Myrtaceae, is a widely utilized essential oil (EO) due to its bioactive properties. The identification and quantification of TTO ingredients is generally performed by GC-MS, which provides the most accurate results. However, in some instances, the cost and time of analysis may pose a challenge.

View Article and Find Full Text PDF

Enantiomeric separation of chiral molecules is pivotal for exploring fundamental questions about life's origin and many other fields. Crystallisation is an important platform for the separation of chiral molecules, elegantly applied to many systems, for instance, the formation of conglomerates, where the enantiomers crystallise as separate phases. Many approaches have been proposed to explore crystallisation-driven enantiomeric separation with fewer insights into the complex pathways associated with the separation processes.

View Article and Find Full Text PDF

In an era of interdisciplinary scientific research, new methodologies are necessary to simultaneously advance several fields of study. One such case involves the measurement of electron spin effects on biological systems. While magnetic effects are well known in biology, recent years have shown a surge in published evidence isolating the dependence on spin, rather than magnetic field, in biological contexts.

View Article and Find Full Text PDF

Chirality plays a crucial role in the pharmacological activity of triazoles, a key scaffold in antifungal agents and various therapeutic applications. This study focuses on optimizing the enantiomeric resolution of chiral triazoles using supercritical fluid chromatography (SFC) and 10 different columns, either immobilized or coated, chlorinated or nonchlorinated, cellulose or amylose-based chiral stationary phases (CSPs). Four novel triazoles and two marketed ones (tebuconazole and hexaconazole) were separated to determine optimal resolution conditions.

View Article and Find Full Text PDF

Oolong tea contains diverse isomers, such as amino acids. D-amino acids, compared with their L-enantiomers, exhibit distinct properties, influencing both the flavor and bioactivity of the tea. However, the analysis of these isomers remains challenging, especially the simultaneous determination of structural and chiral isomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!