Gadolinium-based contrast agents (GBCAs) are massively employed in radiology to increase the diagnostic power of MRI. However, investigations aiming at detecting possible metabolic perturbations or adverse health effects due to gadolinium deposition are still lacking. In this work, aqueous organs extract and plasma samples were analyzed by GC-MS and H-NMR, respectively, to investigate the effects of multiple administrations of one linear (Omniscan) and one macrocyclic (ProHance) GBCA, on the main metabolic pathways in healthy mice. Multivariate analysis revealed that plasma metabolome was not differently perturbed by the two GBCAs, while, the multiorgan analysis displayed a clear separation of the Omniscan-treated from the control and the ProHance-treated groups. Interestingly, the most affected organs were the brain, cerebellum and liver. Thus, this work paves the way to both the safest use of the commercially available GBCAs and the development of new GBCAs characterized by lower general toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3an00353aDOI Listing

Publication Analysis

Top Keywords

comparison biological
4
biological effects
4
effects gadodiamide
4
gadodiamide omniscan
4
omniscan gadoteridol
4
gadoteridol prohance
4
prohance multi-organ
4
multi-organ plasma
4
plasma metabolomics
4
metabolomics gadolinium-based
4

Similar Publications

Deciphering the colostral-immunity transfer: from mammary gland to neonates small intestine.

Vet Res Commun

January 2025

Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.

Colostrum, the initial mammary secretion produced by various mammals following birth, is a conduit for maternal immunity transfer in diverse mammalian species. Concurrently, many cellular processes are occurring in the neonatal small intestine to prepare it to receive molecular signals from a superfood essential for the neonate's health and development. During the prepartum colostrum secretion, the newborn intestine undergoes transient alterations in the intestinal barrier, primarily regulating immunoglobulin absorption.

View Article and Find Full Text PDF

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

The long-term health of former athletes with a history of multiple concussions and/or repetitive head impact (RHI) exposure has been of growing interest among the public. The true proportion of dementia cases attributable to neurotrauma and the neurobehavioral profile/sequelae of multiple concussion and RHI exposure among athletes has been difficult to determine. Across three exposure paradigms (i.

View Article and Find Full Text PDF

Valproic Acid and Lamotrigine Differentially Modulate the Telomere Length in Epilepsy Patients.

J Clin Med

January 2025

Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico.

: Antiseizure drugs (ASDs) are the primary therapy for epilepsy, and the choice varies according to seizure type. Epilepsy patients experience chronic mitochondrial oxidative stress and increased levels of pro-inflammatory mediators, recognizable hallmarks of biological aging; however, few studies have explored aging markers in epilepsy. Herein, we addressed for the first time the impact of ASDs on molecular aging by measuring the telomere length (TL) and mtDNA copy number (mtDNA-CN).

View Article and Find Full Text PDF

Physiological Root Resorption of Deciduous Teeth: An ATR-FTIR Approach.

J Clin Med

December 2024

Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.

: The study exploited, for the first time, Attenuated Total Reflectance-Fourier Transform-InfraRed (ATR-FTIR) spectroscopy on human dental pulps at different timings of root resorption (RR) to deepen the biological mechanisms occurring in deciduous teeth (De) during their replacement with permanent ones. : N:36 dental pulps from sound De were divided into the following: G0 (no RR); G1 (RR less than 1/3 of root length); G2 (RR not exceeding 2/3 of root length); and G3 (RR more than 2/3 of root length). Samples were analyzed by ATR-FTIR, and the spectral data were submitted to univariate (One-way ANOVA and Tukey's multiple comparison tests; statistical significance set at < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!