Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
O and Δ'O are emerging tracers increasingly used in isotope hydrology, climatology, and biochemistry. Differentiating small relative abundance changes in the rare O isotope from the strong covariance with O imposes ultra-high precision requirements for this isotope analysis. Measurements of O by Cavity Ringdown Spectroscopy (CRDS) are attractive due to the ease of sample preparation, automated throughput, and avoidance of chemical conversions needed for isotope-ratio mass spectrometry. However, the CRDS approach requires trade-offs in measurement precision and uncertainty. In this protocol document, we present the following:•New analytical procedures and a software tool for conducting O and Δ'O measurements by CRDS.•Outline a robust uncertainty framework for Δ'O determinations.•Description of a CRDS performance framework for optimizing throughput, instrumental stability, and Δ'O measurement precision and accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113836 | PMC |
http://dx.doi.org/10.1016/j.mex.2023.102150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!