Dye-sensitized solar cells (DSSCs) are potential products for the next generation of photovoltaic technology, which is one of the research hotspots in photovoltaics. The counter electrode in DSSCs collects electron in the external circuit and catalyzes the reduction of the redox electrolyte and hole transport in the solid electrolyte. Thus, it undoubtedly has an important impact on the photovoltaic performance, long-term stability, and cost of DSSCs. In this work, the materials of counter electrodes are classified into metals, carbon materials, conductive polymers, and inorganic compounds. The preparation, mechanism, conversion efficiency, and properties of counter electrodes are reviewed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114283 | PMC |
http://dx.doi.org/10.1039/d3ra00926b | DOI Listing |
This study developed a novel PbS-rGO composite counter electrode to enhance the performance of quantum dot-sensitized solar cells (QDSSCs). The composite was synthesized a hydrothermal method by anchoring PbS nanocubes onto reduced graphene oxide (rGO) sheets. The effect of the mass ratio of rGO to PbS (0.
View Article and Find Full Text PDFNanotechnology
January 2025
Muhayil Asir, Applied College, King Khalid University, Abha 62529, Saudi Arabia.
ACS Appl Mater Interfaces
January 2025
University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
Proton conducting electrochemical cells (PCECs) are efficient and clean intermediate-temperature energy conversion devices. The proton concentration across the PCECs is often nonuniform, and characterizing the distribution of proton concentration can help to locate the position of rate-limiting reactions. However, the determination of the local proton concentration under operating conditions remains challenging.
View Article and Find Full Text PDFNat Commun
December 2024
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Electrochemical nitrate reduction reaction offers a sustainable and efficient pathway for ammonia synthesis. Maintaining satisfactory Faradaic efficiency for long-term nitrate reduction under ampere-level current density remains challenging due to the inevitable hydrogen evolution, particularly in pure nitrate solutions. Herein, we present the application of electron deficiency of Ru metals to boost the repelling effect of counter K ions via the electric-field-dependent synergy of interfacial water and cations, and thus largely promote nitrate reduction reaction with a high yield and well-maintained Faradaic efficiency under ampere-level current density.
View Article and Find Full Text PDFSci Rep
December 2024
Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
The present study demonstrates the synthesis of compact ZnO layers using CdS sensitized on ZnO as a photoanode with copper sulfide (CuS) and carbon as a counter electrode (CE). In this study, a compact ZnO layer was fabricated using the simple and low-cost successive ionic layer adsorption and reaction (SILAR) method, and CuS CE films were synthesized using the chemical bath deposition method. Various characterizations, such as X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), confirmed the formation of ZnO and CdS sensitizations on the ZnO .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!