The characteristics of the complete chloroplast genome of (Hance) O. Kuntze (Acanthaceae).

Mitochondrial DNA B Resour

Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China.

Published: April 2023

(Hance) O. Kuntze (Acanthaceae) is an important ornamental herb mainly distributed in the southern region of China, including Fujian, Guangdong, Hainan, and Taiwan provinces. However, the complete chloroplast genome of , which could serve as a genetic resource for studies on its taxonomy and evolution, is poorly studied at present. In this study, we reported the complete chloroplast genome of that was assembled using high-throughput sequencing data. The chloroplast genome was 153,783 bp long, with a typical quadripartite structure containing a small single-copy region (SSC; 17,855 bp), a large single-copy region (LSC; 84,636 bp) and a pair of inverted repeats (IRs; each 25,646 bp). The overall GC content of the chloroplast genome was 38.04%. A total of 86 protein-coding genes (PCGs), 8 rRNA genes, and 37 tRNA genes were predicted. Phylogenetic analysis based on the combined sequences of 86 PCGs with the other 16 closely related species of Acanthaceae indicated that is closely related to . The genomic data and finding from the phylogenetic studies of could provide useful information and give light to in-depth studies on the evolution pattern of the understudied species, as well as Staurogyne.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116917PMC
http://dx.doi.org/10.1080/23802359.2023.2199894DOI Listing

Publication Analysis

Top Keywords

chloroplast genome
20
complete chloroplast
12
hance kuntze
8
kuntze acanthaceae
8
single-copy region
8
chloroplast
5
genome
5
characteristics complete
4
genome hance
4
acanthaceae hance
4

Similar Publications

Protocol for the purification of the plastid-encoded RNA polymerase from transplastomic tobacco plants.

STAR Protoc

January 2025

National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

The plastid-encoded RNA polymerase (PEP) plays an essential role in the transcription of the chloroplast genome. Here, we present a strategy to purify the transcriptionally active protein complex from transplastomic tobacco (Nicotiana tabacum) lines in which one of the PEP core subunits is fused to an epitope tag. We describe experimental procedures for designing transformation constructs for PEP purification, selection, and analysis of transplastomic tobacco plants.

View Article and Find Full Text PDF

The Hypericaceae family, comprising nine genera and over seven hundred species, includes plants traditionally used for medicinal purposes. In this study, we performed high-throughput sequencing on three species: , , and , and conducted comparative genomic analyses with related species. The chloroplast genome sizes were 152,654 bp, 122,570 bp, and 137,652 bp, respectively, with an average GC content of 37.

View Article and Find Full Text PDF

is a member of the Styracaceae family, which is well-known for its remarkable ornamental and medicinal properties. In this research, we conducted comparative analysis of the chloroplast genomes from four samples of representing . The results demonstrated that the chloroplast genome of four samples ranging from 157,103 bp to 158,357 bp exhibited a typical quadripartite structure, including one large single-copy (LSC) region (90,131 bp to 90,342 bp), one small single-copy (SSC) region (18,467 bp to 18,785 bp), and two inverted repeat regions (IRs) (24,115 bp to 24,261 bp).

View Article and Find Full Text PDF

Background: Phaius Lour. (Collabieae, Orchidaceae) is a small genus consisting of about 45 species, with highly ornamental and medicinal values. However, the phylogenetic relationship of Phaius among Calanthe s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!