Background And Aims: All fields have seen an increase in machine-learning techniques. To accurately evaluate the efficacy of novel modeling methods, it is necessary to conduct a critical evaluation of the utilized model metrics, such as sensitivity, specificity, and area under the receiver operator characteristic curve (AUROC). For commonly used model metrics, we proposed the use of analytically derived distributions (ADDs) and compared it with simulation-based approaches.
Methods: A retrospective cohort study was conducted using the England National Health Services Heart Disease Prediction Cohort. Four machine learning models (XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boost) were used. The distribution of the model metrics and covariate gain statistics were empirically derived using boot-strap simulation ( = 10,000). The ADDs were created from analytic formulas from the covariates to describe the distribution of the model metrics and compared with those of bootstrap simulation.
Results: XGBoost had the most optimal model having the highest AUROC and the highest aggregate score considering six other model metrics. Based on the Anderson-Darling test, the distribution of the model metrics created from bootstrap did not significantly deviate from a normal distribution. The variance created from the ADD led to smaller SDs than those derived from bootstrap simulation, whereas the rest of the distribution remained not statistically significantly different.
Conclusions: ADD allows for cross study comparison of model metrics, which is usually done with bootstrapping that rely on simulations, which cannot be replicated by the reader.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119581 | PMC |
http://dx.doi.org/10.1002/hsr2.1214 | DOI Listing |
Comput Struct Biotechnol J
December 2024
Department of Computer Science, Virginia Tech, Blacksburg, 24061, VA, USA.
Quality estimation of the predicted interaction interface of protein complex structural models is not only important for complex model evaluation and selection but also useful for protein-protein docking. Despite recent progress fueled by symmetry-aware deep learning architectures and pretrained protein language models (pLMs), existing methods for estimating protein complex quality have yet to fully exploit the collective potentials of these advances for accurate estimation of protein-protein interface. Here we present EquiRank, an improved protein-protein interface quality estimation method by leveraging the strength of a symmetry-aware E(3) equivariant deep graph neural network (EGNN) and integrating pLM embeddings from the pretrained ESM-2 model.
View Article and Find Full Text PDFAm J Neurodegener Dis
December 2024
Department of Radiology, Carver College of Medicine, University of Iowa Iowa, IA 52242, USA.
Objectives: This study aims to explore the capabilities of dendritic learning within feedforward tree networks (FFTN) in comparison to traditional synaptic plasticity models, particularly in the context of digit recognition tasks using the MNIST dataset.
Methods: We employed FFTNs with nonlinear dendritic segment amplification and Hebbian learning rules to enhance computational efficiency. The MNIST dataset, consisting of 70,000 images of handwritten digits, was used for training and testing.
Ophthalmol Sci
November 2024
A2-Ai, Ann Arbor, Michigan.
Objective: To develop a population pharmacokinetic (PK) model to characterize serum pegcetacoplan concentration-time data after intravitreal administration in patients with geographic atrophy (GA) or neovascular age-related macular degeneration (nAMD).
Design: Pharmacokinetic modeling.
Participants: Two hundred sixty-one patients with GA or nAMD enrolled in 4 clinical studies of pegcetacoplan.
Heliyon
January 2025
Department of Energy System Engineering, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, No. 15, Pardis St., Molasadra Ave., Vanak Sq., Tehran, Iran.
The rising global demand for air conditioning systems, driven by increasing temperatures and urbanization, has led to higher energy consumption and greenhouse gas emissions. HVAC systems, particularly AC, account for nearly half of building energy use, highlighting the need for efficient cooling solutions. Passive cooling, especially radiative cooling, offers potential to reduce cooling loads and improve energy efficiency.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia.
The prediction of energy consumption in households is essential due to the reliance on electrical appliances for daily activities. Accurate assessment of energy demand is crucial for effective energy generation, preventing overloads and optimizing energy storage. Traditional techniques have limitations in accuracy and error rates, necessitating advancements in prediction techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!