Background: The implementation of artificial intelligence (AI) in mental healthcare offers a potential solution to some of the problems associated with the availability, attractiveness, and accessibility of mental healthcare services. However, there are many knowledge gaps regarding how to implement and best use AI to add value to mental healthcare services, providers, and consumers. The aim of this paper is to identify challenges and opportunities for AI use in mental healthcare and to describe key insights from implementation science of potential relevance to understand and facilitate AI implementation in mental healthcare.
Methods: The paper is based on a selective review of articles concerning AI in mental healthcare and implementation science.
Results: Research in implementation science has established the importance of considering and planning for implementation from the start, the progression of implementation through different stages, and the appreciation of determinants at multiple levels. Determinant frameworks and implementation theories have been developed to understand and explain how different determinants impact on implementation. AI research should explore the relevance of these determinants for AI implementation. Implementation strategies to support AI implementation must address determinants specific to AI implementation in mental health. There might also be a need to develop new theoretical approaches or augment and recontextualize existing ones. Implementation outcomes may have to be adapted to be relevant in an AI implementation context.
Conclusion: Knowledge derived from implementation science could provide an important starting point for research on implementation of AI in mental healthcare. This field has generated many insights and provides a broad range of theories, frameworks, and concepts that are likely relevant for this research. However, when taking advantage of the existing knowledge basis, it is important to also be explorative and study AI implementation in health and mental healthcare as a new phenomenon in its own right since implementing AI may differ in various ways from implementing evidence-based practices in terms of what implementation determinants, strategies, and outcomes are most relevant. The implementation of artificial intelligence (AI) in mental healthcare offers a potential solution to some of the problems associated with the availability, attractiveness, and accessibility of mental healthcare services. However, there are many knowledge gaps concerning how to implement and best use AI to add value to mental healthcare services, providers, and consumers. This paper is based on a selective review of articles concerning AI in mental healthcare and implementation science, with the aim to identify challenges and opportunities for the use of AI in mental healthcare and describe key insights from implementation science of potential relevance to understand and facilitate AI implementation in mental healthcare. AI offers opportunities for identifying the patients most in need of care or the interventions that might be most appropriate for a given population or individual. AI also offers opportunities for supporting a more reliable diagnosis of psychiatric disorders and ongoing monitoring and tailoring during the course of treatment. However, AI implementation challenges exist at organizational/policy, individual, and technical levels, making it relevant to draw on implementation science knowledge for understanding and facilitating implementation of AI in mental healthcare. Knowledge derived from implementation science could provide an important starting point for research on AI implementation in mental healthcare. This field has generated many insights and provides a broad range of theories, frameworks, and concepts that are likely relevant for this research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9924259 | PMC |
http://dx.doi.org/10.1177/26334895221112033 | DOI Listing |
Eur J Obstet Gynecol Reprod Biol
January 2025
Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Los Angeles General Medical Center, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA. Electronic address:
Objective: To assess clinical and obstetric characteristics associated with pregnant patients with a diagnosis of attention-deficit hyperactivity disorder (ADHD).
Methods: This serial cross-sectional study queried the Agency of Healthcare Research and Quality's Healthcare Cost and Utilization Project National Inpatient Sample. The study population was 16,759,786 hospital deliveries from 2016 to 2020.
BMC Nurs
January 2025
Nursing Department, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
Background: Artificial Intelligence (AI) is increasingly applied in healthcare to boost productivity, reduce administrative workloads, and improve patient outcomes. In nursing, AI offers both opportunities and challenges. This study explores nurses' perspectives on implementing AI in nursing practice within the context of Jordan, focusing on the perceived benefits and concerns related to its integration.
View Article and Find Full Text PDFBMC Surg
January 2025
Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
Background: Metabolic and bariatric surgery (MBS) is a suitable solution for the treatment of morbid obesity. Investigating an MBS method that has the best outcomes has always been the main concern of physicians. The current study aimed to compare nutritional, anthropometric, and psychological complications of individuals undergoing various MBS Techniques.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology and Surgical Intensive Care Unit, Kunming Children's Hospital, Kunming, Yunnan, China.
Metabolic syndrome (Mets) in adolescents is a growing public health issue linked to obesity, hypertension, and insulin resistance, increasing risks of cardiovascular disease and mental health problems. Early detection and intervention are crucial but often hindered by complex diagnostic requirements. This study aims to develop a predictive model using NHANES data, excluding biochemical indicators, to provide a simple, cost-effective tool for large-scale, non-medical screening and early prevention of adolescent MetS.
View Article and Find Full Text PDFBMJ Open
January 2025
The Third People's Hospital of Zhuhai, Zhuhai, Guangdong, China
Objectives: To explore the factors influencing medication adherence and the medication needs of patients with schizophrenia when living in a community in China.
Design: A qualitative study.
Setting: Community and psychiatric ward in Zhuhai city, Guangdong province.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!