Adhesive materials have recently drawn intensive attention due to their excellent sealing ability, thereby stimulating advances in materials science and industrial usage. However, reported adhesives usually exhibit weak adhesion strength, require high pressure for strong bonding, and display severe adhesion deterioration in various harsh environments. In this work, instead of water or organic solvents, a deep eutectic solution (DES) was used as the medium for photopolymerization of zwitterionic and polarized monomers, thus generating a novel ionogel with tunable mechanical properties. Multiple hydrogen bonds and electrostatic interactions between DES and monomers facilitated ultrafast gelation and instant bonding without any external pressure, which was rarely reported previously. Furthermore, high adhesion in different harsh environments (e.g., water, acidic and basic buffers, and saline solutions) and onto hydrophilic (e.g., glass and tissues) and hydrophobic (e.g., polymethyl methacrylate, polystyrene, and polypropylene) adherends was demonstrated. Also, high stretchability of the ionogel at extreme temperatures (-80 and 80 °C) indicated its widespread applications. Furthermore, the biocompatible ionogel showed high burst pressure onto stomach and intestine tissues to prevent liquid leakage, highlighting its potential as an adhesive patch. This ionogel provides unprecedented opportunities in the fields of packaging industry, marine engineering, medical adhesives, and electronic assembly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10118073 | PMC |
http://dx.doi.org/10.1002/adfm.202207388 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!