Several COVID-19 vaccine strategies utilizing new formulations for the induction of neutralizing antibodies (nAbs) and T cell immunity are still under evaluation in preclinical and clinical studies. Here we used Simian Immunodeficiency Virus (SIV)-based integrase defective lentiviral vector (IDLV) delivering different conformations of membrane-tethered Spike protein in the mouse immunogenicity model, with the aim of inducing persistent nAbs against multiple SARS-CoV-2 variants of concern (VoC). Spike modifications included prefusion-stabilizing double proline (2P) substitutions, mutations at the furin cleavage site (FCS), D614G mutation and truncation of the cytoplasmic tail (delta21) of ancestral and Beta (B.1.351) Spike, the latter mutation to markedly improve IDLV membrane-tethering. BALB/c mice were injected once with IDLV delivering the different forms of Spike or the recombinant trimeric Spike protein with 2P substitutions and FCS mutations in association with a squalene-based adjuvant. Anti-receptor binding domain (RBD) binding Abs, nAbs and T cell responses were detected up to six months from a single immunization with escalating doses of vaccines in all mice, but with different levels and kinetics. Results indicated that IDLV delivering the Spike protein with all the combined modifications, outperformed the other candidates in terms of T cell immunity and level of both binding Abs and nAbs soon after the single immunization and persistence over time, showing the best capacity to neutralize all formerly circulating VoC Alpha, Beta, Gamma and Delta. Although present, the lowest response was detected against Omicron variants (BA.1, BA.2 and BA.4/5), suggesting that the magnitude of immune evasion may be related to the higher genetic distance of Omicron as indicated by increased number of amino acid substitutions in Spike acquired during virus evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113491 | PMC |
http://dx.doi.org/10.3389/fimmu.2023.1147953 | DOI Listing |
Biophys Chem
December 2024
School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, India. Electronic address:
Despite being mostly neglected in structural biology, the C-terminal Regions (CTRs) are studied to be multifunctional in humans as well as in viruses. Previously, SARS-CoV-2 Spike and NSP1 proteins' CTRs are observed to be disordered, and experimental evidence showed a gain of structure properties in different physiological environments. In this line, we have investigated the structural dynamics of CTR (residues 38-61) of SARS-CoV-2 ORF6 protein, disrupting bidirectional transport between the nucleus and cytoplasm.
View Article and Find Full Text PDFPLoS One
December 2024
Research Organization for Health, National Research and Innovation (BRIN), Cibinong, Indonesia.
Developing intranasal vaccines against pandemics and devastating airborne infectious diseases is imperative. The superiority of intranasal vaccines over injectable systemic vaccines is evident, but developing effective intranasal vaccines presents significant challenges. Fusing a protein antigen with the catalytic domain of cholera toxin (CTA1) and the two-domain D of staphylococcal protein A (DD) has significant potential for intranasal vaccines.
View Article and Find Full Text PDFmSphere
December 2024
International Vaccine Institute, Seoul, South Korea.
AdCLD-CoV19-1, a chimeric adenovirus-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, was previously reported to elicit robust antibody responses in mice and non-human primates after a single dose. In this study, we conducted a systems serology analysis to investigate changes in humoral immune responses induced by varying doses of the AdCLD-CoV19-1 vaccine in a phase I clinical trial. Serum samples from participants receiving either a low or a high dose of the vaccine were analyzed for antibody features against prototype SARS-CoV-2 spike (S) domains (full-length S, S1, S2, and receptor binding domain), as well as Fc receptor binding and effector functions.
View Article and Find Full Text PDFJ Chem Inf Model
December 2024
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Spain.
Previous works show the key role of electrostatics in the SARS-CoV-2 virus in aspects such as virus-cell interactions or virus inactivation by ionic surfactants. Electrostatic interactions depend strongly on the variant since the charge of the Spike protein (responsible for virus-environment interactions) evolved across the variants from the highly negative Wild Type (WT) to the highly positive Omicron variant. The distribution of the charge also evolved from diffuse to highly localized.
View Article and Find Full Text PDFExpert Rev Vaccines
December 2024
Guangzhou Patronus Biotech Co, Ltd, Guangzhou, China.
Background: LYB001 is a recombinant protein COVID-19 vaccine displaying a receptor-binding domain (RBD) in a highly immunogenic array on virus-like particles (VLPs). This study assessed the immunogenicity and safety of LYB001 as a booster.
Research Design And Methods: In this randomized, active-controlled, double-blinded, phase 3 trial, participants aged ≥18 years received a booster with LYB001 or ZF2001 (Recombinant COVID-19 Vaccine).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!