Reprogramming of the gamete into a developmentally competent embryo identity is a fundamental aspect of preimplantation development. One of the most important processes of this reprogramming is the transcriptional awakening during embryonic genome activation (EGA), which robustly occurs in fertilized embryos but is defective in most somatic cell nuclear transfer (SCNT) embryos. However, little is known about the genome-wide underlying chromatin landscape during EGA in SCNT embryos and how it differs from a fertilized embryo. By profiling open chromatin genome-wide in both types of bovine embryos, we find that SCNT embryos fail to reprogram a subset of the EGA gene targets that are normally activated in fertilized embryos. Importantly, a small number of transcription factor (TF) motifs explain most chromatin regions that fail to open in SCNT embryos suggesting that over-expression of a limited number of TFs may provide more robust reprogramming. One such TF, the zygotically-expressed bovine gene DUXC which is a homologue of EGA factors DUX/DUX4 in mouse/human, is alone capable of activating ∼84% of all EGA transcripts that fail to activate normally in SCNT embryos. Additionally, single-cell chromatin profiling revealed low intra-embryo heterogeneity but high inter-embryo heterogeneity in SCNT embryos and an uncoupling of cell division and open chromatin reprogramming during EGA. Surprisingly, our data also indicate that transcriptional defects may arise downstream of promoter chromatin opening in SCNT embryos, suggesting additional mechanistic insights into how and why transcription at EGA is dysregulated. We anticipate that our work will lead to altered SCNT protocols to increase the developmental competency of bovine SCNT embryos.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120652PMC
http://dx.doi.org/10.1101/2023.04.10.536281DOI Listing

Publication Analysis

Top Keywords

scnt embryos
32
embryos
12
scnt
9
chromatin reprogramming
8
somatic cell
8
cell nuclear
8
nuclear transfer
8
bovine embryos
8
embryonic genome
8
genome activation
8

Similar Publications

METTL3 improves the development of somatic cell nuclear transfer embryos through AURKB and H3S10ph in goats.

Int J Biol Macromol

December 2024

College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Developmental abnormalities are more common in somatic cell nuclear transfer (SCNT) embryos due to epigenetic barriers that occur during the maternal-to-zygotic transition (MZT). N6-methyladenosine (m6A) is an RNA epigenetic modification that plays a significant role in numerous biological processes. However, the relationship between m6A and SCNT embryonic development is largely unexplored.

View Article and Find Full Text PDF

Future of reproductive biotechnologies in water buffalo in Southeast Asian countries.

Theriogenology

February 2025

Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand. Electronic address:

The future of reproductive biotechnologies in water buffalo in Southeast Asian countries holds significant promise for enhancing genetic quality and productivity. Fixed-time artificial insemination remains the commonly used technology, with advances in assisted reproductive technologies (ART) such as in vitro embryo production (IVEP), embryo transfer (ET), and the use of sex-sorted sperm increasingly adopted to improve breeding efficiency. These technologies overcome traditional breeding limitations, such as low reproductive rates, genetic diversity constraints, and the production of sex-predetermined offspring.

View Article and Find Full Text PDF

Production of second-generation sheep clones via somatic cell nuclear transfer using amniotic cells as nuclear donors.

Theriogenology

January 2025

College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; College of Medicine, Hainan Vocational University of Science and Technology, Haikou, 571126, China; Inner Mongolia Key Laboratory of Biomanufacture, Hohhot, 010018, China. Electronic address:

Somatic Cell Nuclear Transfer (SCNT) has transformed animal genetic improvement, gene-editing in model production, xenotransplantation, and conservation efforts for endangered species. However, SCNT-derived embryos occasionally display developmental abnormalities, and following embryo transfer, the miscarriage rate is high. Gene-edited fetuses may experience birth defects, resulting in decreased survival rates.

View Article and Find Full Text PDF

Optical tweezer-assisted cell pairing and fusion for somatic cell nuclear transfer within an open microchannel.

Lab Chip

November 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Institute of Robotics and Automatic Information System (IRAIS), Nankai University, Tianjin 300350, China.

Somatic cell nuclear transfer (SCNT), referred to as somatic cell cloning, is a pivotal biotechnological technique utilized across various applications. Although robotic SCNT is currently available, the subsequent oocyte electrical activation/reconstructed embryo electrofusion is still manually completed by skilled operators, presenting challenges in efficient manipulation due to the uncontrollable positioning of the reconstructed embryo. This study introduces a robotic SCNT-electrofusion system to enable high-precision batch SCNT cloning.

View Article and Find Full Text PDF

Embryo Transfer Surgery via Laparotomy in Gilts.

J Vis Exp

October 2024

Centro de Estudos sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo.

This protocol aims to demonstrate the surgical technique for transferring cloned pig embryos to the oviduct, a method widely used in the production of genetically modified pigs for biomedical research. Nine gilts underwent hormonal synchronization and laparotomy for the transfer of cloned embryos produced by somatic cell nuclear transfer (SCNT) at stages of up to 4 cells on day 2 to the oviduct. Gestational diagnosis was conducted via ultrasound examination 30 days post-transfer surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!