Cortical microstructural associations with CSF amyloid and pTau.

medRxiv

Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States.

Published: April 2023

AI Article Synopsis

  • Diffusion MRI (dMRI) can effectively analyze the microstructure of brain tissue and may help in non-invasively mapping Alzheimer's disease (AD) pathology.
  • A study involving 66 individuals found that lower CSF Aβ and higher pTau levels correlated with dMRI measures indicating less restricted diffusion, suggesting dMRI may be better at detecting early AD changes than traditional methods.
  • The findings indicate that dMRI markers are more associated with Aβ levels, while cortical thickness is more closely linked with pTau, highlighting dMRI's potential in understanding cognitive decline related to AD.

Article Abstract

Diffusion MRI (dMRI) can be used to probe microstructural properties of brain tissue and holds great promise as a means to non-invasively map Alzheimer's disease (AD) pathology. Few studies have evaluated multi-shell dMRI models, such as neurite orientation dispersion and density imaging (NODDI) and mean apparent propagator (MAP)-MRI, in cortical gray matter where many of the earliest histopathological changes occur in AD. Here, we investigated the relationship between CSF pTau and Aβ burden and regional cortical NODDI and MAP-MRI indices in 46 cognitively unimpaired individuals, 18 with mild cognitive impairment, and two with dementia (mean age: 71.8±6.2 years) from the Alzheimer's Disease Neuroimaging Initiative. We compared findings to more conventional cortical thickness measures. Lower CSF Aβ and higher pTau were associated with cortical dMRI measures reflecting less hindered or restricted diffusion and greater diffusivity. Cortical dMRI measures were more widely associated with Aβ than pTau and better distinguished Aβ+ from Aβ- participants than pTau+/- participants. Conversely, cortical thickness was more tightly linked with pTau. dMRI associations mediated the relationship between CSF markers and delayed logical memory performance, commonly impaired in early AD. dMRI measures sensitive to early AD pathogenesis and microstructural damage may elucidate mechanisms underlying cognitive decline.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120803PMC
http://dx.doi.org/10.1101/2023.04.10.23288366DOI Listing

Publication Analysis

Top Keywords

dmri measures
12
alzheimer's disease
8
relationship csf
8
cortical thickness
8
cortical dmri
8
cortical
7
dmri
6
ptau
5
cortical microstructural
4
microstructural associations
4

Similar Publications

Introduction: The plasma proteome's mediating or moderating roles in the association between poor cardiovascular health (CVH) and brain white matter (WM) microstructural integrity are largely unknown.

Methods: Data from 3953 UK Biobank participants were used (40-70 years, 2006-2010), with a neuroimaging visit between 2014 and 2021. Poor CVH was determined using Life's Essential 8 (LE8) and reversing standardized z-scores (LE8 ).

View Article and Find Full Text PDF

Evaluating tissue microstructure and membrane integrity in the living human brain through diffusion-water exchange imaging is challenging due to requirements for a high signal-to-noise ratio and short diffusion times dictated by relatively fast exchange processes. The goal of this work was to demonstrate the feasibility of imaging of tissue micro-geometries and water exchange within the brain gray matter using the state-of-the-art Connectome 2.0 scanner equipped with an ultra-high-performance gradient system (maximum gradient strength=500 mT/m, maximum slew rate=600 T/m/s).

View Article and Find Full Text PDF

Objective: High Angular Resolution Diffusion Imaging (HARDI) models have emerged as a valuable tool for investigating microstructure with a higher degree of detail than standard diffusion Magnetic Resonance Imaging (dMRI). In this study, we explored the potential of multiple advanced microstructural diffusion models for investigating preterm birth in order to identify non-invasive markers of altered white matter development.

Approach: Rather than focusing on a single MRI modality, we studied on a compound of HARDI techniques in 46 preterm babies studied on a 3T scanner at term-equivalent age and in 23 control neonates born at term.

View Article and Find Full Text PDF

More Than the Sum of Its Parts: Disrupted Core Periphery of Multiplex Brain Networks in Multiple Sclerosis.

Hum Brain Mapp

January 2025

Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK.

Disruptions to brain networks, measured using structural (sMRI), diffusion (dMRI), or functional (fMRI) MRI, have been shown in people with multiple sclerosis (PwMS), highlighting the relevance of regions in the core of the connectome but yielding mixed results depending on the studied connectivity domain. Using a multilayer network approach, we integrated these three modalities to portray an enriched representation of the brain's core-periphery organization and explore its alterations in PwMS. In this retrospective cross-sectional study, we selected PwMS and healthy controls with complete multimodal brain MRI acquisitions from 13 European centers within the MAGNIMS network.

View Article and Find Full Text PDF

Microstructural mapping of neural pathways in Alzheimer's disease using macrostructure-informed normative tractometry.

Alzheimers Dement

December 2024

Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA.

Introduction: Diffusion-weighted magnetic resonance imaging (dMRI) is sensitive to the microstructural properties of brain tissues and shows great promise in detecting the effects of degenerative diseases. However, many approaches analyze single measures averaged over regions of interest without considering the underlying fiber geometry.

Methods: We propose a novel macrostructure-informed normative tractometry (MINT) framework to investigate how white matter (WM) microstructure and macrostructure are jointly altered in mild cognitive impairment (MCI) and dementia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!