PI3Kγ is a critical immune signaling enzyme activated downstream of diverse cell surface molecules, including Ras, PKCβ activated by the IgE receptor, and Gβγ subunits released from activated GPCRs. PI3Kγ can form two distinct complexes, with the p110γ catalytic subunit binding to either a p101 or p84 regulatory subunit, with these complexes being differentially activated by upstream stimuli. Here using a combination of cryo electron microscopy, HDX-MS, and biochemical assays we have identified novel roles of the helical domain of p110γ in regulating lipid kinase activity of distinct PI3Kγ complexes. We defined the molecular basis for how an allosteric inhibitory nanobody potently inhibits kinase activity through rigidifying the helical domain and regulatory motif of the kinase domain. The nanobody did not block either p110γ membrane recruitment or Ras/Gβγ binding, but instead decreased ATP turnover. We also identified that p110γ can be activated by dual PKCβ helical domain phosphorylation leading to partial unfolding of an N-terminal region of the helical domain. PKCβ phosphorylation is selective for p110γ-p84 compared to p110γ-p101, driven by differential dynamics of the helical domain of these different complexes. Nanobody binding prevented PKCβ mediated phosphorylation. Overall, this works shows an unexpected allosteric regulatory role of the helical domain of p110γ that is distinct between p110γ-p84 and p110γ-p101 and reveals how this can be modulated by either phosphorylation or allosteric inhibitory binding partners. This opens possibilities of future allosteric inhibitor development for therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120615PMC
http://dx.doi.org/10.1101/2023.04.12.536585DOI Listing

Publication Analysis

Top Keywords

helical domain
28
domain
8
domain p110γ
8
kinase activity
8
allosteric inhibitory
8
helical
7
p110γ
6
allosteric
5
activated
5
allosteric activation
4

Similar Publications

Background: Oculodentodigital dysplasia (ODDD) is a rare syndrome that causes a constellation of facial, ophthalmic, dental, and limb abnormalities. Variants in the gap junction alpha-1 () gene have been described in patients with ODDD. Hereby we present the ocular manifestations in a patient with recessive ODDD due to a novel homozygous frameshift variant in .

View Article and Find Full Text PDF

Heat-stable single-helical structures formed during the extrusion process play a key role in the cooking and texture qualities of rice noodles.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; International Institute of Food Innovation Co, Ltd, Nanchang University, Nanchang 330200, China. Electronic address:

Extrusion is a critical process in rice noodle production. However, the underlying mechanism by which it influences noodle quality remains inadequately understood. In this study, rice noodles were processed at extrusion temperatures ranging from 100 °C to 140 °C and characterized in terms of molecular structure, short- and long-range order, microstructure, cooking loss, and texture properties.

View Article and Find Full Text PDF

Peptide stapling is an effective strategy to stabilise α-helical peptides, enhancing their bioactive conformation and improving physiochemical properties. In this study, we apply our novel diyne-girder stapling approach to the MDM2/MDMX α-helical binding region of the p53 transactivation domain. By incorporation of an unnatural amino acid to create an optimal , + 7 bridge length, we developed a highly α-helical stapled peptide, 4, confirmed circular dichroism.

View Article and Find Full Text PDF

Precisely crafted hierarchical architectures found in naturally derived biomaterials underpin the exceptional performance and functionality showcased by the host organism. In particular, layered helical assemblies composed of cellulose, chitin, or collagen serve as the foundation for some of the most mechanically robust and visually striking natural materials. By utilizing structured materials in additive manufacturing techniques such as extrusion-based 3D printing, the intrinsic deformation process can be used to implement bottom-up design of printed constructs, offering the potential to create intricate macroscale geometries with embedded nanoscale functionality.

View Article and Find Full Text PDF

Sevenless, the Drosophila homologue of ROS1 (University of Rochester Sarcoma) (herein, dROS1) is a receptor tyrosine kinase (RTK) essential for the differentiation of Drosophila R7 photoreceptor cells. Activation of dROS1 is mediated by binding to the extracellular region (ECR) of the GPCR (G protein coupled receptor) BOSS (Bride Of Sevenless) on adjacent cells. Activation of dROS1 by BOSS leads to subsequent downstream signaling pathways including SOS (Son of Sevenless).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!