The Sigma 2 receptor (σR) was described pharmacologically more than three decades ago, but its molecular identity remained obscure until recently when it was identified as transmembrane protein 97 (TMEM97). We and others have shown that σR/TMEM97 ligands alleviate mechanical hypersensitivity in mouse neuropathic pain models with a time course wherein maximal anti-nociceptive effect is approximately 24 hours following dosing. We sought to understand this unique anti-neuropathic pain effect by addressing two key questions: do these σR/TMEM97 compounds act selectively via the receptor, and what is their downstream mechanism on nociceptive neurons? Using male and female conventional knockout (KO) mice for we find that a new σR/TMEM97 binding compound, FEM-1689, requires the presence of the gene to produce anti-nociception in the spared nerve injury model in mice. Using primary mouse dorsal root ganglion (DRG) neurons, we demonstrate that FEM-1689 inhibits the integrated stress response (ISR) and promotes neurite outgrowth via a σR/TMEM97-specific action. We extend the clinical translational value of these findings by showing that FEM-1689 reduces ISR and p-eIF2α levels in human sensory neurons and that it alleviates the pathogenic engagement of ISR by methylglyoxal. We also demonstrate that σR/TMEM97 is expressed in human nociceptors and satellite glial cells. These results validate σR/TMEM97 as a promising target for further development for the treatment of neuropathic pain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120691 | PMC |
http://dx.doi.org/10.1101/2023.04.11.536439 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!