Deconvoluting Kinetic Rate Constants of Catalytic Substrates from Scanning Electrochemical Approach Curves with Artificial Neural Networks.

ACS Meas Sci Au

Department of Chemical & Petroleum Engineering, The University of Kansas, 4132 Learned Hall, 1530 West 15th Street, Lawrence, Kansas66045, United States.

Published: April 2023

Extracting information from experimental measurements in the chemical sciences typically requires curve fitting, deconvolution, and/or solving the governing partial differential equations via numerical (e.g., finite element analysis) or analytical methods. However, using numerical or analytical methods for high-throughput data analysis typically requires significant postprocessing efforts. Here, we show that deep learning artificial neural networks can be a very effective tool for extracting information from experimental data. As an example, reactivity and topography information from scanning electrochemical microscopy (SECM) approach curves are highly convoluted. This study utilized multilayer perceptrons and convolutional neural networks trained on simulated SECM data to extract kinetic rate constants of catalytic substrates. Our key findings were that multilayer perceptron models performed very well when the experimental data were close to the ideal conditions with which the model was trained. However, convolutional neural networks, which analyze images as opposed to direct data, were able to accurately predict the kinetic rate constant of Fe-doped nickel (oxy)hydroxide catalyst at different applied potentials even though the experimental approach curves were not ideal. Due to the speed at which machine learning models can analyze data, we believe this study shows that artificial neural networks could become powerful tools in high-throughput data analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120032PMC
http://dx.doi.org/10.1021/acsmeasuresciau.2c00056DOI Listing

Publication Analysis

Top Keywords

neural networks
20
kinetic rate
12
approach curves
12
artificial neural
12
rate constants
8
constants catalytic
8
catalytic substrates
8
scanning electrochemical
8
extracting experimental
8
typically requires
8

Similar Publications

Purpose: To quantify outer retina structural changes and define novel biomarkers of inherited retinal degeneration associated with biallelic mutations in RPE65 (RPE65-IRD) in patients before and after subretinal gene augmentation therapy with voretigene neparvovec (Luxturna).

Methods: Application of advanced deep learning for automated retinal layer segmentation, specifically tailored for RPE65-IRD. Quantification of five novel biomarkers for the ellipsoid zone (EZ): thickness, granularity, reflectivity, and intensity.

View Article and Find Full Text PDF

Bee-yond the plateau: Training QNNs with swarm algorithms.

J Chem Phys

January 2025

NeuroTechNet S.A.S, 1108831 Bogotá, Colombia and Quantum and Computational Chemistry Group, Universidad Nacional de Colombia - Bogotá Campus, Bogotá, Colombia.

In the quest to harness the power of quantum computing, training quantum neural networks (QNNs) presents a formidable challenge. This study introduces an innovative approach, integrating the Bees Optimization Algorithm (BOA) to overcome one of the most significant hurdles-barren plateaus. Our experiments across varying qubit counts and circuit depths demonstrate the BOA's superior performance compared to the Adam algorithm.

View Article and Find Full Text PDF

Neuromorphic and fully analog in-memory computations are promising for handling vast amounts of data with minimal energy consumption. We have synthesized and studied a series of homo-bimetallic silver purine MOFs (1D and 2D) having direct metal-metal bonding. The N7-derivatized purine ligands are designed to form bi-metallic complexes under ambient conditions, extending to a 1D or 2D metal-organic framework.

View Article and Find Full Text PDF

The Biomedical Applications of Artificial Intelligence: An Overview of Decades of Research.

J Drug Target

January 2025

Sunirmal Bhattacharjee, Bharat Pharmaceutical Technology, Amtali, Agartala, Tripura, India.

A significant area of computer science called artificial intelligence (AI) is successfully applied to the analysis of intricate biological data and the extraction of substantial associations from datasets for a variety of biomedical uses. AI has attracted significant interest in biomedical research due to its features: (i) better patient care through early diagnosis and detection; (ii) enhanced workflow; (iii) lowering medical errors; (v) lowering medical costs; (vi) reducing morbidity and mortality; (vii) enhancing performance; (viii) enhancing precision; and (ix) time efficiency. Quantitative metrics are crucial for evaluating AI implementations, providing insights, enabling informed decisions, and measuring the impact of AI-driven initiatives, thereby enhancing transparency, accountability, and overall impact.

View Article and Find Full Text PDF

Objective: Automatic segmentation and detection of vestibular schwannoma (VS) in MRI by deep learning is an upcoming topic. However, deep learning faces generalization challenges due to tumor variability even though measurements and segmentation of VS are essential for growth monitoring and treatment planning. Therefore, we introduce a novel model combining two Convolutional Neural Network (CNN) models for the detection of VS by deep learning aiming to improve performance of automatic segmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!