A spectroelectrochemical cell is described that enables confocal Raman microscopy studies of electrode-supported films. The confocal probe volume (∼1 μm) was treated as a fixed-volume reservoir for the observation of potential-induced changes in chemical composition at microscopic locations within an ∼20 μm thickness layer of a redox polymer cast onto a 3 mm diameter carbon disk electrode. Using a Raman system with high collection efficiency and wavelength reproducibility, spectral subtraction achieved excellent rejection of background interferences, opening opportunities for measuring within micrometer-scale thickness redox films on widely available, low-cost, and conventional carbon disk electrodes. The cell performance and spectral difference technique are demonstrated in experiments that detect transformations of redox-active molecules exchanged into electrode-supported ionomer membranes. The in situ measurements were sensitive to changes in the film oxidation state and swelling/deswelling of the polymer framework in response to the uptake and discharge of charge-compensating electrolyte ions. The studies lay a foundation for confocal Raman microscopy as a quantitative in situ probe of processes within electrode-immobilized redox polymers under development for a range of applications, including electrosynthesis, energy conversion, and chemical sensing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120033 | PMC |
http://dx.doi.org/10.1021/acsmeasuresciau.2c00064 | DOI Listing |
Int J Biol Macromol
January 2025
College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, PR China.
This study successfully developed a gelatin-sodium carboxymethyl cellulose-peach gum composite microcapsule system using the complex coacervation method. Optimal preparation conditions were determined by turbidity, complex condensate yield and encapsulation efficiency: the ratio of gelatin to sodium carboxymethyl cellulose was 7:1, the ratio of gelatin/sodium carboxymethyl cellulose to peach gum was 4:1, and the pH value was 4.2.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
January 2025
UMR SayFood 0782, Université Paris-Saclay, INRAE, Palaiseau, AgroParisTech, France.
Assessing the contamination of paper and board (P&B) food packaging materials poses significant challenges due to the sensitivity limits of analytical methods and the low precision of sampling processes. This study aims to enhance the understanding of P&B food packaging contamination by investigating the distribution of contaminants at different scales using a combination of chromatographic and spectroscopic techniques. A total of 36 substances were targeted, including phthalates, photoinitiators, and bisphenol A.
View Article and Find Full Text PDFACS Photonics
January 2025
Institute of Biomedical Physics, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria.
Confocal Raman microscopy, a highly specific and label-free technique for the microscale study of thick samples, often presents difficulties due to weak Raman signals. Inhomogeneous samples introduce wavefront aberrations that further reduce these signals, requiring even longer acquisition times. In this study, we introduce Adaptive Optics to confocal Raman microscopy for the first time to counteract such aberrations, significantly increasing the Raman signal and image quality.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States.
Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.
View Article and Find Full Text PDFNanotechnology
January 2025
Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas, 78712-1139, UNITED STATES.
Sapphire is an attractive material in photonic, optoelectronic, and transparent ceramic applications that stand to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating nanostructures in sapphire by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this approach an ultrafast laser pulse is focused on the sapphire substrate to change the crystalline morphology to amorphous or polycrystalline, which is characterized by examining different vibrational modes using Raman spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!