Tea plant () lipid metabolism pathway modulated by tea field microbe () to promote disease.

Hortic Res

Laboratory of Tea and Medicinal Plant Biology, College of Plant Sciences, Jilin University, Changchun 130062, China.

Published: April 2023

Tea is one of the most popular healthy and non-alcoholic beverages worldwide. Tea anthracnose is a disease in tea mature leaves and ultimately affects yield and quality. is a dominant fungal pathogen in the tea field that infects tea plants in China. The pathogenic factors of fungus and the susceptible factors in the tea plant are not known. In this work, we performed molecular and genetic studies to observe a cerato-platanin protein CcCp1 from , which played a key role in fungal pathogenicity. △ mutants lost fungal virulence and reduced the ability to produce conidia. Transcriptome and metabolome were then performed and analysed in tea-susceptible and tea-resistant cultivars, Longjing 43 and Zhongcha 108, upon wild-type CCA and △ infection, respectively. The differentially expressed genes and the differentially accumulated metabolites in tea plants were clearly overrepresented such as linolenic acid and linoleic acid metabolism, glycerophospholipid metabolism, phenylalanine biosynthesis and metabolism, biosynthesis of flavonoid, flavone and flavonol etc. In particular, the accumulation of jasmonic acid was significantly increased in the susceptible cultivar Longjing 43 upon CCA infection, in the fungal CcCp1 protein dependent manner, suggesting the compound involved in regulating fungal infection. In addition, other metabolites in the glycerophospholipid and phenylalanine pathway were observed in the resistant cultivar Zhongcha 108 upon fungal treatment, suggesting their potential role in defense response. Taken together, this work indicated CcCp1 affected the tea plant lipid metabolism pathway to promote disease while the lost function of CcCp1 mutants altered the fungal virulence and plant response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117433PMC
http://dx.doi.org/10.1093/hr/uhad028DOI Listing

Publication Analysis

Top Keywords

tea plant
12
tea
10
plant lipid
8
lipid metabolism
8
metabolism pathway
8
tea field
8
promote disease
8
disease tea
8
tea plants
8
fungal virulence
8

Similar Publications

LACCASE35 Enhances Lignification and Resistance Against Pseudomonas syringae pv. actinidiae Infection in Kiwifruit.

Plant Physiol

January 2025

Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, P.R.  China.

Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production.

View Article and Find Full Text PDF

Background/objectives: Dartmoor Estate Tea plantation in Devon, UK, is renowned for its unique microclimate and varied soil conditions, which contribute to the distinctive flavours and chemical profiles of tea. The chemical diversity of fresh leaf samples from various garden locations was explored within the plantation.

Methods: Fresh leaf, which differed by location, cultivar, time of day, and variety, was analysed using Flow Infusion Electrospray Ionisation Mass Spectrometry (FIE-MS).

View Article and Find Full Text PDF

Two leucine-rich repeat receptor-like kinases initiate herbivory defense responses in tea plants.

Hortic Res

January 2025

Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China.

Leucine-rich repeat receptor-like kinases (LRR-RLKs) have emerged as key regulators of herbivory perception and subsequent defense initiation. While their functions in grass plants have been gradually elucidated, the roles of herbivory-related LRR-RLKs in woody plants remain largely unknown. In this study, we mined the genomic and transcriptomic data of tea plants () and identified a total of 307 CsLRR-RLK members.

View Article and Find Full Text PDF

Bacteriophage LDT325 enhances tolerance by improving antioxidant defense in tea plant [ (L.) O. Kuntze].

Front Microbiol

January 2025

School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China.

Bud blight caused by is a serious disease affecting tea plants and causing severe damage to production output and quality. Phages play an important role in controlling the development of bacterial diseases in plants. Previous studies have shown that the tolerance of phage-treated tea plants to bud blight was notably greater compared with that of the control group.

View Article and Find Full Text PDF

Maillard reaction inducing amino acids degradation can adjust the flavour characteristic of black tea.

Food Res Int

February 2025

Tea Research Institute, China Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China. Electronic address:

Drying is the step that is to be used to adjust and control the formation of flavour and quality in black tea processing. In the present work, the comprehensive two-dimensional gas chromatography with mass spectrometry (GC × GC-MS) and gas chromatography olfactometry with mass (GC-O-MS) were used to determine the dynamic change of the volatile compounds in black tea during drying at 90, 120, 150 °C for 1 h. Results showed that the ratio of esters and aldehydes largely declined when temperature was elevated from 90 °C to 150 °C, while the ratio of heterocycles was increased to 22.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!