Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Artesunate (ART) is a semi-synthetized molecule from Artemisinin, an active compound isolated from the medicinal plant , widely used for the treatment of malaria. Previous studies reported that ART may exert a dual effect on the liver. Accordingly, this study investigated the potential protective action of ART against Acetaminophen (APAP) and Carbon tetrachloride (CCl)-induced hepatotoxicity in primary mice hepatocytes, in comparison to that of flavonoid extracted from (FAA). In addition, the antioxidant properties of FAA were also assessed.
Methods: The antioxidant activities of FAA and Ascorbic acid (ASC) (0.01-100 μg/mL) were assessed through inhibition of lipid peroxidation, reduction of ferric and phosphomolydenum, and hydroxyl and DPPH radicals scavenging assays. The hepatoprotective effects of FAA and ART (0.1-100 μg/mL) were evaluated against APAP (11 mM) or CCl4 (4 mM) induced oxidative damage in primary mouse hepatocytes. Biochemical parameters associated with hepatotoxicity assessed include cell viability, cell membrane integrity, cellular glutathione, and antioxidant enzyme activities.
Results: The obtained finding revealed FAA displayed a remarkable antioxidant activities as evidenced by the low IC/EC values (3.85-19.32 μg/mL), comparable to that of ASC (3.26-18.04 μg/mL). When tested at 10 μg/mL, both FAA and ART significantly (p˂0.05) preserved cell viability, inhibited alanine aminotransferase leakage and lipid membrane peroxidation, and restored superoxide dismutase and catalase activities and glutathione content induced by APAP or CCl in a similar way as Silymarin. However, ART showed a significant (p˂0.05) cytotoxic effect on hepatocytes at 100 and 1000 μg/mL and did not confer obvious protection at 100 μg/mL.
Conclusion: Overall, our data demonstrated that ART harms mice hepatocytes at high concentration while conferring relative protection against APAP and CCl-hepatotoxicity at low concentration. In contrast, FAA effectively protects liver cells without cytotoxicity effect, event at 100 μg/mL. Accordingly, ART should be given to the patient only under a medical prescription.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114220 | PMC |
http://dx.doi.org/10.1016/j.metop.2023.100241 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!