Tracking plant water status is a critical step towards the adaptive precision irrigation management of processing tomatoes, one of the most important specialty crops in California. The photochemical reflectance index (PRI) from proximal sensors and the high-resolution unmanned aerial vehicle (UAV) imagery provide an opportunity to monitor the crop water status efficiently. Based on data from an experimental tomato field with intensive aerial and plant-based measurements, we developed random forest machine learning regression models to estimate tomato stem water potential ( ), (using observations from proximal sensors and 12-band UAV imagery, respectively, along with weather data. The proximal sensor-based model estimation agreed well with the plant with of 0.74 and mean absolute error (MAE) of 0.63 bars. The model included PRI, normalized difference vegetation index, vapor pressure deficit, and air temperature and tracked well with the seasonal dynamics of across different plots. A separate model, built with multiple vegetation indices (VIs) from UAV imagery and weather variables, had an of 0.81 and MAE of 0.67 bars. The plant-level maps generated from UAV imagery closely represented the water status differences of plots under different irrigation treatments and also tracked well the temporal change among flights. PRI was found to be the most important VI in both the proximal sensor- and the UAV-based models, providing critical information on tomato plant water status. This study demonstrated that machine learning models can accurately estimate the water status by integrating PRI, other VIs, and weather data, and thus facilitate data-driven irrigation management for processing tomatoes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117946PMC
http://dx.doi.org/10.3389/fpls.2023.1057733DOI Listing

Publication Analysis

Top Keywords

water status
24
uav imagery
20
machine learning
12
proximal sensors
12
photochemical reflectance
8
plant water
8
irrigation management
8
management processing
8
processing tomatoes
8
pri proximal
8

Similar Publications

Background And Objectives: Regular physical activity (PA) and Mediterranean diet (MeDi) adherence independently improve glycemic control and clinical outcomes in type 2 diabetes mellitus (T2DM). This study examined the associations between PA, body composition (BC), MeDi adherence, and glycemic control in Dalmatian T2DM patients.

Materials And Methods: A cross-sectional study was conducted at the University Hospital of Split (November-December 2023) during an open call for T2DM patients.

View Article and Find Full Text PDF

Grapevines are subjected to many physiological and environmental stresses that influence their vegetative and reproductive growth. Water stress, cold damage, and pathogen attacks are highly relevant stresses in many grape-growing regions. Precision viticulture can be used to determine and manage the spatial variation in grapevine health within a single vineyard block.

View Article and Find Full Text PDF

Drought stress can adversely affect the seed germination and seedling growth of wheat plants. This study analyzed the effect of drought on seed germination and the morphological parameters of seedlings from ten winter wheat genotypes. The primary focus was to elucidate the effects of two drought intensities on metabolic status in wheat seedlings.

View Article and Find Full Text PDF

Environmental DNA Insights into the Spatial Status of Fish Diversity in the Mainstem of the Jialing River.

Animals (Basel)

January 2025

Laboratory of Water Ecological Health and Environmental Safety, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.

Preserving healthy river habitats is essential for maintaining fish diversity. Over time, anthropogenic activities have severely damaged river habitats, leading to notable changes in fish diversity patterns. Conducting thorough and reliable investigations into fish diversity is crucial for assessing anthropogenic impacts on diversity.

View Article and Find Full Text PDF

Background: Geographical factors can affect infectious disease transmission, including SARS-CoV-2, a virus that is spread through respiratory secretions. Prioritization of surveillance and response activities during a pandemic can be informed by a pathogen's geographical transmission patterns. We assessed the relationship between geographical factors and SARS-CoV-2 prevalence in Zambia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!