Long non-coding RNAs (lncRNAs) has been proven by many to play a crucial part in the process of sepsis. To obtain a better understanding of sepsis, the molecular biomarkers associated with it, and its possible pathogenesis, we obtained data from RNA-sequencing analysis using serum from three sepsis patients and three healthy controls (HCs). Using edgeR (one of the Bioconductor software package), we identified 1118 differentially expressed mRNAs (DEmRNAs) and 1394 differentially expressed long noncoding RNAs (DElncRNAs) between sepsis patients and HCs. We identified the biological functions of these disordered genes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analyses. The GO analysis showed that the homophilic cell adhesion via plasma membrane adhesion molecules was the most significantly enriched category. The KEGG signaling pathway analysis indicated that the differentially expressed genes (DEGs) were most significantly enriched in retrograde endocannabinoid signaling. Using STRING, a protein-protein interaction network was also created, and Cytohubba was used to determine the top 10 hub genes. To examine the relationship between the hub genes and sepsis, we examined three datasets relevant to sepsis that were found in the gene expression omnibus (GEO) database. PTEN and HIST2H2BE were recognized as hub gene in both GSE4607, GSE26378, and GSE9692 datasets. The receiver operating characteristic (ROC) curves indicate that PTEN and HIST2H2BE have good diagnostic value for sepsis. In conclusion, this two hub genes may be biomarkers for the early diagnosis of sepsis, our findings should deepen our understanding of the pathogenesis of sepsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113783PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e15034DOI Listing

Publication Analysis

Top Keywords

differentially expressed
12
hub genes
12
sepsis
10
sepsis patients
8
kegg signaling
8
signaling pathway
8
pten hist2h2be
8
genes
6
identification potential
4
potential biomarkers
4

Similar Publications

Background: Rectal cancer is a highly heterogeneous gastrointestinal tumor, and the prognosis for patients with treatment-resistant and metastatic rectal cancer remains poor. Mitophagy, a type of selective autophagy that targets mitochondria, plays a role in promoting or inhibiting tumors; however, the importance of mitophagy-related genes (MRGs) in the prognosis and treatment of rectal cancer is unclear.

Methods: In this study, we used the differentially expressed genes (DEGs) and MRGs from the TCGA-READ dataset to identify differentially expressed mitophagy-related genes (MRDEGs).

View Article and Find Full Text PDF

Screened of long non-coding RNA related to wool development and fineness in Gansu alpine fine-wool sheep.

BMC Genomics

January 2025

Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.

Wool growth and fineness regulation is influenced by some factors such as genetics and environment. At the same time, lncRNA participates in numerous biological processes in animal production. In this research, we conducted a thorough analysis and characterization of the microstructure of wool, along with long non-coding RNAs (lncRNAs), their target genes, associated pathways, and Gene Ontology terms pertinent to the wool fineness development.

View Article and Find Full Text PDF

The mechanism of Hespintor (a protein of serpin family) inhibitory action on the growth of inoculated hepatocellular carcinoma was studied in a model of human hepatoma in nude mice by using on long-noncoding RNA (lncRNA) sequencing. Two days after tumor transplantation, Hespintor or normal saline was injected into the caudal vein at a dose of 15 μg/kg (2 times a week over 4 weeks). The tumors were isolated in 4 weeks after subcutaneous injection of human hepatoma MHCC97-H cells.

View Article and Find Full Text PDF

Huntington's disease (HD) is caused by a CAG repeat expansion in the HTT gene, leading to altered gene expression. However, the mechanisms leading to disrupted RNA processing in HD remain unclear. Here we identify TDP-43 and the N6-methyladenosine (m6A) writer protein METTL3 to be upstream regulators of exon skipping in multiple HD systems.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) plasticity and ER-phagy are intertwined processes essential for maintaining ER dynamics. We investigated the interplay between two isoforms of the ER-phagy receptor FAM134B in regulating ER remodeling in differentiating myoblasts. During myogenesis, the canonical FAM134B1 is degraded, while its isoform FAM134B2 is transcriptionally upregulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!