Six catalysts MnL-MnL, containing two crown ether rings and their analogs supported on the MCM-41 heterogeneous substrate (MnL@MCM41-MnL@MCM41) were synthesized and characterized. A mixture of molecular oxygen, as an oxidant, and these catalysts were used for the epoxidation of styrene. As a general result, the supported catalysts showed better performance compared with the unsupported analogs. On the other hand, the supported species, in addition to recyclability, did not require an axial base and reducing agent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114206 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e15041 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Oak Ridge National Laboratory, Chemical Sciences Division, UNITED STATES OF AMERICA.
Precise sub-Ångstrom-level porosity engineering, which is appealing in gas separations, has been demonstrated in solid carbon, polymer, and framework materials but rarely achieved in the liquid phase. In this work, a gas molecular sieving effect in the liquid phase at sub-5 Ångstrom scale is created via sophisticated porosity tuning in calixarene-derived porous liquids (PLs). Type II PLs are constructed via supramolecular complexation between the sodium salts of calixarene derivatives and crown ether solvents.
View Article and Find Full Text PDFChem Sci
December 2024
Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Centre of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China
Here, we report a water-induced supramolecular polymer adhesive formed from confined water and an intrinsically amphiphilic macrocyclic self-assembly in a nanophase-separated structure. The selenium-containing crown ether macrocycle, featuring a strong hydrophilic hydrogen-bond receptor (selenoxide) and a synergistic hydrophobic selenium-substituted crown core, confines water within a segregated, interdigitated architecture. While water molecules typically freeze around 0 °C, the confined water in this supramolecular polymer remains in a liquid-like state down to -80 °C.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China.
Extracting lithium from salt lakes requires ion-selective membranes with customizable nanochannels. However, it remains a major challenge to separate alkali cations due to their same valences and similar ionic radius. Inspired by the K channel of KcsA K, significant progress has been made in adjusting nanochannel size to control the ion selectivity dominated by alkali cations dehydration.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Center for Nanoscience and Sustainable Technologies (CNATS), Universidad Pablo de Olavide, 41013 Seville, Spain.
The proton bond is a pivotal chemical motif in many areas of science and technology. Its quantum chemical description is remarkably challenged by nuclear and charge delocalization effects and the fluxional perturbation that it induces on molecular substrates. This work seeks insights into proton bonding at sub-kelvin temperatures.
View Article and Find Full Text PDFACS Nano
January 2025
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
Crown ethers (CEs), macrocyclic polyethers, have attracted significant attention in supramolecular chemistry. It is known that they have many isomers due to their flexibility. It is challenging to select some exact conformation and tune the following self-assembly structure of CEs, and it has rarely been reported to date.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!