Introduction: Drug discovery in academia and industry poses contrasting challenges. While academia focuses on producing new knowledge, industry is keen on product development and success in clinical trials. Galaxy is a web-based open-source computational workbench which is used to analyze large datasets and is customized to integrate analysis and visualization tools in a single framework. Depending on the methodology, one can generate customized and suitable workflows in the Galaxy platform.
Areas Covered: Herein, the authors appraise the suitability of the Galaxy platform for developing a disease specific web portal called the Molecular Property Diagnostic Suite (MPDS). The authors include their future perspectives in the expert opinion section.
Expert Opinion: Galaxy is ideally suited for community-based software development as the scripts, tools, and codes developed in the different programming languages can be integrated in an extremely efficient fashion. MPDS puts forth a new approach known as a disease-specific web portal which aims to implement a range of computational methods and algorithms that can be developed and shared freely across the community of computer aided drug design (CADD) scientists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17460441.2023.2205122 | DOI Listing |
iScience
January 2025
Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Humans and animals excel at learning complex tasks through reward-based feedback, dynamically adjusting value expectations and choices based on past experiences to optimize outcomes. However, understanding the hidden cognitive components driving these behaviors remains challenging. Neuroscientists use the Temporal Difference (TD) learning model to estimate cognitive elements like value representation and prediction error during learning and decision-making processes.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
January 2025
Pharmacokinetics Dynamics and Metabolism/Translational Medicine and Early Development, Sanofi R&D Montpellier, Montpellier, France.
A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available.
View Article and Find Full Text PDFFront Robot AI
January 2025
Interactive Robotics Laboratory, School of Computing and Augmented Intelligence (SCAI), Arizona State University (ASU), Tempe, AZ, United States.
We present WearMoCap, an open-source library to track the human pose from smartwatch sensor data and leveraging pose predictions for ubiquitous robot control. WearMoCap operates in three modes: 1) a Watch Only mode, which uses a smartwatch only, 2) a novel Upper Arm mode, which utilizes the smartphone strapped onto the upper arm and 3) a Pocket mode, which determines body orientation from a smartphone in any pocket. We evaluate all modes on large-scale datasets consisting of recordings from up to 8 human subjects using a range of consumer-grade devices.
View Article and Find Full Text PDFFront Robot AI
January 2025
Department of Computer Science, Faculty of Engineering (LTH), Lund University, Lund, Sweden.
When developing general-purpose robot software components, we often lack complete knowledge of the specific contexts in which they will be executed. This limits our ability to make predictions, including our ability to detect program bugs statically. Since running a robot is an expensive task, finding errors at runtime can prolong the debugging loop or even cause safety hazards.
View Article and Find Full Text PDFNatl J Maxillofac Surg
November 2024
Department of Oral and Maxillofacial Surgery, Hospital Universitario La Paz, Paseo de la Castellana, Madrid, Spain.
The anatomical location of certain lesions can be a difficulty when locating them intraoperatively. The use of surgical navigation allows anatomical structures to be located with great precision. However, there are technical difficulties with its use in mandibular surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!