CircTmeff1 Promotes Muscle Atrophy by Interacting with TDP-43 and Encoding A Novel TMEFF1-339aa Protein.

Adv Sci (Weinh)

Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.

Published: June 2023

Skeletal muscle atrophy is a common clinical feature of many acute and chronic conditions. Circular RNAs (circRNAs) are covalently closed RNA transcripts that are involved in various physiological and pathological processes, but their role in muscle atrophy remains unknown. Global circRNA expression profiling indicated that circRNAs are involved in the pathophysiological processes of muscle atrophy. circTmeff1 is identified as a potential circRNA candidate that influences muscle atrophy. It is further identified that circTmeff1 is highly expressed in multiple types of muscle atrophy in vivo and in vitro. Moreover, the overexpression of circTmeff1 triggers muscle atrophy in vitro and in vivo, while the knockdown of circTmeff1 expression rescues muscle atrophy in vitro and in vivo. In particular, the knockdown of circTmeff1 expression partially rescues muscle mass in mice during established atrophic settings. Mechanistically, circTmeff1 directly interacts with TAR DNA-binding protein 43 (TDP-43) and promotes aggregation of TDP-43 in mitochondria, which triggers the release of mitochondrial DNA (mtDNA) into cytosol and activation of the cyclic GMP-AMP synthase (cGAS)/ stimulator of interferon genes (STING) pathway. Unexpectedly, TMEFF1-339aa is identified as a novel protein encoded by circTmeff1 that mediates its pro-atrophic effects. Collectively, the inhibition of circTmeff1 represents a novel therapeutic approach for multiple types of skeletal muscle atrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265041PMC
http://dx.doi.org/10.1002/advs.202206732DOI Listing

Publication Analysis

Top Keywords

muscle atrophy
36
muscle
10
circtmeff1
9
atrophy
9
skeletal muscle
8
multiple types
8
atrophy vitro
8
vitro vivo
8
vivo knockdown
8
knockdown circtmeff1
8

Similar Publications

Dendritic alterations precede age-related dysphagia and nucleus ambiguus motor neuron death.

J Physiol

January 2025

Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.

Motor neurons (MNs) within the nucleus ambiguus innervate the skeletal muscles of the larynx, pharynx and oesophagus, which are essential for swallow. Disordered swallow (dysphagia) is a serious problem in elderly humans, increasing the risk of aspiration, a key contributor to mortality. Despite this importance, very little is known about the pathophysiology of ageing dysphagia and the relative importance of frank muscle weakness compared to timing/activation abnormalities.

View Article and Find Full Text PDF

Purpose The infrapatellar fat pad (IFP) has the lowest pain threshold among all knee joint components and causes anterior knee pain after knee arthroplasty. It has been reported that selective muscle atrophy of the vastus medialis (VM) and fibrosis of the IFP may develop following knee joint surgery. Ultrasound enables visualization of IFP deformation (A1) from within the joint to the proximal area in response to muscle contraction, and this may be helpful in developing preventive and therapeutic strategies for IFP fibrosis.

View Article and Find Full Text PDF

Objective: In this study, we aimed to determine the effects of 2-week neuromuscular electrical stimulation (NMES) on quadriceps muscle atrophy and lower extremity motor score in individuals with subacute incomplete cervical spinal cord injury (SCI).

Methods: This stratified randomized controlled trial, conducted in the advanced critical care center of a university hospital, comprised 49 individuals with American Spinal Injury Association (ASIA) impairment scale grade C and D incomplete cervical SCI. The participants were stratified based on the ASIA impairment scale grade and randomly assigned to the control (n = 25) or NMES (n = 24) group.

View Article and Find Full Text PDF

Background: Diaphragm thickness is a potential marker of sarcopenia in addition to muscle mass and strength at extremities. We aimed to clarify the descriptive epidemiology and prognostic significance of diaphragm thickness in the general population.

Methods: The study participants were 3324 community residents (mean age: 61.

View Article and Find Full Text PDF

Thoracolumbar spine muscle size and composition changes in long-duration space missions.

Life Sci Space Res (Amst)

February 2025

Department of Biomedical Engineering, Center for Injury Biomechanics, Wake Forest University School of Medicine. 575 N. Patterson Avenue, Suite 530. Winston-Salem, NC 27101, USA. Electronic address:

Muscle atrophy occurs with extended exposure to microgravity. This study quantified the overall muscle size, lean muscle area and fat infiltration changes pre- to post-flight that occur in the thoracic and lumbar spine with long-duration spaceflight. Pre- and post-flight magnetic resonance imaging (MRI) scans were obtained from 9 crewmembers on long-duration (≥6 months) International Space Station (ISS) missions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!