Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: The use of artificial intelligence (AI) to identify acute intracranial haemorrhage (ICH) on computed tomography (CT) scans may facilitate initial imaging interpretation in the accident and emergency department. However, AI model construction requires a large amount of annotated data for training, and validation with real-world data has been limited. We developed an algorithm using an open-access dataset of CT slices, then assessed its utility in clinical practice by validating its performance on CT scans from our institution.
Methods: Using a publicly available international dataset of >750 000 expert-labelled CT slices, we developed an AI model which determines ICH probability for each CT scan and nominates five potential ICH-positive CT slices for review. We validated the model using retrospective data from 1372 non-contrast head CT scans (84 [6.1%] with ICH) collected at our institution.
Results: The model achieved an area under the curve of 0.842 (95% confidence interval=0.791-0.894; P<0.001) for scan-based detection of ICH. A pre-specified probability threshold of ≥50% for the presence of ICH yielded 78.6% accuracy, 73% sensitivity, 79% specificity, 18.6% positive predictive value, and 97.8% negative predictive value. There were 62 true-positive scans and 22 false-negative scans, which could be reduced to six false-negative scans by manual review of model-nominated CT slices.
Conclusion: Our model exhibited good accuracy in the CT scan-based detection of ICH, considering the low prevalence of ICH in Hong Kong. Model refinement to allow direct localisation of ICH will facilitate the use of AI solutions in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.12809/hkmj209053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!