Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Bariatric surgery leads to profound changes in gut microbiota and dietary patterns, both of which may interact to impact gut-brain communication. Though cognitive function improves postsurgery, there is a large variability in outcomes. How bariatric surgery-induced modifications in the gut microbiota and dietary patterns influence the variability in cognitive function is still unclear.
Objectives: To elucidate the associations between bariatric surgery-induced changes in dietary and gut microbiota patterns with cognition and brain structure.
Setting: University hospital.
Methods: A total of 120 adult patients (≥30 years) scheduled to undergo a primary bariatric surgery along with 60 age-, sex-, and body mass index-matched patients on the surgery waitlist will undergo assessments 3-months presurgery and 6- and 12-month postsurgery (or an equivalent time for the waitlist group). Additionally, 60 age-and sex-matched nonbariatric surgery eligible individuals will complete the presurgical assessments only. Evaluations will include sociodemographic and health behavior questionnaires, physiological assessments (anthropometrics, blood-, urine-, and fecal-based measures), neuropsychological cognitive tests, and structural magnetic resonance imaging. Cluster analyses of the dietary and gut microbiota changes will define the various dietary patterns and microbiota profiles, then using repeated measures mixed models, their associations with global cognitive and structural brain alterations will be explored.
Results: The coordinating study site (Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, QC, Canada), provided the primary ethical approval (Research Ethics Board#: MP-32-2022-2412).
Conclusions: The insights generated from this study can be used to develop individually-targeted neurodegenerative disease prevention strategies, as well as providing critical mechanistic information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.soard.2023.02.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!