This article describes the use of prognostic, predictive, and response biomarkers that have been developed for autosomal dominant polycystic kidney disease and their use in clinical care or drug development. We focus on biochemical markers that can be assayed in patients' blood and urine and their association with the outcome of decreased glomerular filtration rate. There have been several studies on prognostic biomarkers. The most promising ones have been markers of tubular injury, inflammation, metabolism, or the vasopressin-urinary concentration axis. So far, none have been shown to be superior to kidney volume-based biomarkers. Several biomarkers are additive to kidney volume and genotype in prognostic models, but there have been few direct comparisons between the biochemical markers to identify the best ones. Moreover, there is a lack of uniformity in the statistical tools used to assess and compare biomarkers. There have been few reports of predictive and response biomarkers, and none are suitable surrogate endpoints. The U.S. Food and Drug Administration's Biomarker Qualification Program provides a regulatory pathway to approve biomarkers for use across multiple drug-development programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.akdh.2022.12.009 | DOI Listing |
Cardiovasc Diabetol
January 2025
Facultat de Medicina i Ciències de la Salut, Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Spain.
Backgrounds And Aims: Preclinical studies suggest that a triglyceride (TG)-independent proinflammatory action of apolipoprotein C-III (apoCIII) exists. We aimed to investigate the relationship between circulating apoCIII levels and subclinical inflammation markers across different cohorts with distinctive inflammatory patterns: patients with metabolic disorders (MDs), patients with rheumatoid arthritis (RA), and controls. Specifically, we assessed the associations of apoCIII with acute inflammation biomarkers (e.
View Article and Find Full Text PDFBMC Endocr Disord
January 2025
School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China.
Background: As the prevalence of metabolic syndrome (MetS) rises among older adults, the associated risks of cardiovascular diseases and diabetes significantly increase, and it is closely linked to various metabolic processes in the body. Dysregulation of tryptophan (TRP) metabolism, particularly alterations in the kynurenine (KYN) and serotonin pathways, has been linked to the onset of chronic inflammation, oxidative stress, and insulin resistance, key contributors to the development of MetS. We aim to investigate the relationship between the TRP metabolites and the risk of MetS in older adults.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China.
Background: Recent advancements in contemporary therapeutic approaches have increased the survival rates of lung cancer patients; however, the long-term benefits remain constrained, underscoring the pressing need for novel biomarkers. Surfactant-associated 3 (SFTA3), a long non-coding RNA predominantly expressed in normal lung epithelial cells, plays a crucial role in lung development. Nevertheless, its function in lung adenocarcinoma (LUAD) remains inadequately understood.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
Background: Benign and malignant breast tumors differ in their microvasculature morphology and distribution. Histologic biomarkers of malignant breast tumors are also correlated with the microvasculature. There is a lack of imaging technology for evaluating the microvasculature.
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
Background: Malignant brain tumors are among the most lethal cancers. Recent studies emphasized the crucial involvement of the immune system, especially T cells, in driving tumor progression and influencing patient outcomes. The emerging field of immunometabolism has shown that metabolic pathways play a pivotal role in regulating immune responses within the tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!