The purposes of this study were to characterize polysaccharides from Rhopilema esculentum and to explore their impacts on gut barrier function and inflammation in vitro and in mice with chronic colitis triggered by long-term administration of dextran sulfate sodium (DSS). Two polysaccharides were isolated and purified from Rhopilema esculentum, named REP-1 and REP-2. REP-1 with a molecular weight of 8.21 kDa was composed of mannose, glucosamine, galactosamine, glucose, galactose, and arabinose with a molar ratio of 0.04:0.03:0.38:1:1.36:0.06, and REP-2 with a molecular weight of 10.11 kDa mainly consisted of mannose, glucuronic acid, galactosamine, glucose, galactose, and arabinose with a molar ratio of 0.04:0.12:0.41:1:1.2:0.06. Compared to REP-1, REP-2 displayed better ability to up-regulate the expression of genes related to tight junctions and mucus in LPS-stimulated Caco-2 cells and better immunomodulatory activities in RAW264.7 macrophages. Then animal experiments showed that REP-2 efficiently attenuated the symptoms of colitis, decreased the secretion of pro-inflammatory cytokines, and restored intestinal barrier function in mice with chronic colitis. These results demonstrate that REP-2 might be a promising agent for protecting intestinal and mucus barrier and mitigating inflammation-associated intestinal diseases such as ulcerative colitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.124560 | DOI Listing |
PeerJ
January 2025
Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia.
Population blooms of scyphozoan jellyfish in tropical shallow water regions can fuel localized fisheries but also negatively impact human welfare. However, there is a lack of baseline ecological data regarding the scyphozoans in the region, which could be used to manage a fast-growing fishery and mitigate potential impacts. Thus, this study aims to investigate the temporal factors driving the distribution of scyphozoan community along the environmental gradients under different monsoon seasons, rainfall periods, moon phases, and diel-tidal conditions in the Klang Strait located in the central region along the west coast of Peninsular Malaysia, where bloom events are increasing.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
Liaoning Ocean and Fisheries Science Research Institute/Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs/Key Laboratory of Molecular Biology for Marine Fishery, Dalian 116023, Liaoning, China.
We investigated food composition and feeding selectivity of jellyfish () from the coastal aquaculture ponds in Liaodong Bay by DNA metabarcoding technology. The DNA from environmental water samples and stomach contents of were extracted and sequenced by high-throughput sequencing with 18S rDNA V4 region and mitochondrial cytochrome c oxidase subunit I (COI) as metabarcoding markers. Based on 18S rDNA metabarcoding, we detected 27 phyla in the stomach contents of , in which Mollusc was the dominant phylum followed by Arthropod, and 34 phyla in the environmental water samples, in which Pyrrophyta was the dominant phylum followed by Ciliophora and Ascomycota.
View Article and Find Full Text PDFJ Fish Biol
October 2024
Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.
Pol J Microbiol
August 2024
College of Marine Biological Resources and Management, Shanghai Ocean University, Shanghai, China.
Jellyfish, microorganisms, and the marine environment collectively shape a complex ecosystem. This study aimed to analyze the microbial communities associated with five jellyfish species, exploring their composition, diversity, and relationships. Microbial diversity among the species was assessed using 16S rRNA gene sequencing and QIIME analysis.
View Article and Find Full Text PDFFood Chem X
October 2024
College of Light Industry, Liaoning University, Shenyang 110036, PR China.
The aim of this study was to prepare and characterize jellyfish collagen peptide (JCP)-calcium chelates (JCP-Ca) using peptides with different molecular weights. Further analysis revealed that the low-molecular-weight jellyfish collagen peptide (JCP1) had a higher chelation rate. Structural characterization showed that functional groups such as N-H, C[bond, double bond]O, and -COO were involved in the formation of JCP-Ca, which shifted towards a more ordered and regular structure, and smaller-molecular-weight peptides were more likely to form a denser structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!