Hyaluronate- and gelatin-based hydrogels encapsulating doxycycline as a wound dressing for burn injury therapy.

Acta Biomater

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China. Electronic address:

Published: July 2023

Infection is a critical challenge in burn wound therapy. Wound dressings with antibacterial and multifunctional abilities associated with rapid burn wound healing are urgently needed. Here, we developed a bioadhesive and injectable ECM-mimicking hydrogel dressing with antibacterial capacity for burn injury therapy, which is crosslinked by dynamic boronate ester bonds between modified hyaluronate and gelatin (HG). The antibiotic doxycycline (Doxy) was encapsulated in HG networks for drug delivery around the wound sites. The HG/Doxy hydrogel dressing shows biocompatibility and antibacterial activity against Gram-positive and Gram-negative bacteria. Applying to a rat model of burn wound, the HG/Doxy hydrogel significantly speeds up wound closure by reducing the inflammatory reaction. Furthermore, the HG/Doxy hydrogel accelerates the regeneration of the skin structure by promoting collagen deposition, blood vessel regeneration, and hair follicle formation, eventually shortening the healing periods of burn wounds. These findings demonstrated the clinical potential of the HG/Doxy hydrogels as a promising burn wound dressing. STATEMENT OF SIGNIFICANCE: A bioadhesive and injectable hydrogel dressing has been developed for burn injury therapy. The ECM-mimicking hyaluronate-gelatin (HG) hydrogel with antibacterial ability is crosslinked by dynamic boronate ester bonds for delivering antibiotic doxycycline (Doxy). The HG/Doxy hydrogels exhibit bioadhesive, shape-adaptive, and water retention abilities in closing the irregular-shaped wound and providing a moist environment. The HG/Doxy hydrogels significantly shorten the healing periods of burn wounds in rat models within 10~14 days and promote the regeneration of skin structure, which have high potential for clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2023.04.021DOI Listing

Publication Analysis

Top Keywords

burn wound
16
burn injury
12
injury therapy
12
hydrogel dressing
12
hg/doxy hydrogel
12
hg/doxy hydrogels
12
wound
9
burn
9
wound dressing
8
bioadhesive injectable
8

Similar Publications

Exploring the Research Focus of RNA-Binding Proteins in Trauma and Burns.

Anal Cell Pathol (Amst)

January 2025

Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China.

Trauma and burns are leading causes of death and significant global health concerns. RNA-binding proteins (RBPs) play a crucial role in post-transcriptional gene regulation, influencing various biological processes of cellular RNAs. This study aims to review the emerging trends and key areas of research on RBPs in the context of trauma and burns.

View Article and Find Full Text PDF

This study introduced a hydrogel dressing, termed SODex-gel, which was constructed by establishing Schiff base and hydrogen bonds with the precursors of oxidized dextran (ODex) and succinic dihydrazide (SD)-modified sodium alginate (SD--SA). Through comprehensive and studies, the adhesive properties, self-healing capabilities, hemostatic potential, and wound healing efficacy of the SODex-gel dressing were meticulously evaluated. The H NMR, FTIR, and TGA analyses confirmed the fabrication of the SODex-gel dressing and its constituent elements.

View Article and Find Full Text PDF

The natural extracellular hemoglobin of the lugworm Arenicola marina (AmHb) has many interesting characteristics: It carries 40 times more oxygen than human hemoglobin; has anti-inflammatory, antibacterial, and antioxidant properties; and is 250 times smaller than a red blood cell. It is nontoxic and nonimmunogenic. It is thus a very promising hemoglobin-based oxygen carrier.

View Article and Find Full Text PDF

Exosomes derived from fibroblasts in DFUs delay wound healing by delivering miR-93-5p to target macrophage ATG16L1.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China. Electronic address:

Diabetes is an extremely costly disease, one-third of which are attributed to the management of diabetic foot disease including chronic, non-healing, diabetic foot ulcers (DFUs). Therefore, much effort is needed to understand the pathogenesis of DFUs and novel therapeutics. We utilized exosome staining to confirm the interaction between fibroblast-derived exosomes and macrophages.

View Article and Find Full Text PDF

Patients often use Google for their medical questions. With the emergence of artificial intelligence large language models, such as ChatGPT, patients may turn to such technologies as an alternative source of medical information. This study investigates the safety, accuracy, and comprehensiveness of medical responses provided by ChatGPT in comparison to Google for common questions about burn injuries and their management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!