Declining thymic functions associated either with old age (i.e., age-related thymic involution), or with acute involution as a result of stress, infectious disease, or cytoreductive therapies (e.g., chemotherapy/radiotherapy), have been associated with cancer development. A key mechanism underlying such increased cancer risk is the thymus-dependent debilitation of adaptive immunity, which is responsible for orchestrating immunoediting mechanisms and tumor immune surveillance. In the past few years, a blooming set of evidence has intriguingly linked obesity with cancer development and progression. The majority of such studies has focused on obesity-driven chronic inflammation, steroid/sex hormone and adipokine production, and hyperinsulinemia, as principal factors affecting the tumor microenvironment and driving the development of primary malignancy. However, experimental observations about the negative impact of obesity on T cell development and maturation have existed for more than half a century. Here, we critically discuss the molecular and cellular mechanisms of obesity-driven thymic involution as a previously underrepresented intermediary pathology leading to cancer development and progression. This knowledge could be especially relevant in the context of childhood obesity, because impaired thymic function in young individuals leads to immune system abnormalities, and predisposes to various pediatric cancers. A thorough understanding behind the molecular and cellular circuitries governing obesity-induced thymic involution could therefore help towards the rationalized development of targeted thymic regeneration strategies for obese individuals at high risk of cancer development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.semcancer.2023.04.008 | DOI Listing |
J Clin Med
January 2025
Division of Thoracic Surgery, Policlinico Umberto I, Sapienza University of Rome, 00165 Rome, Italy.
multilocular thymic cysts are uncommon acquired cysts in the anterior mediastinum caused by incomplete thymic involution. They may be associated with autoimmune diseases, such as rheumatoid arthritis and systemic sclerosis. a 61-year-old man with a history of rheumatoid arthritis for 8 years was referred to our unit because of a multiloculated mass in the anterior mediastinum with a high F fluorodeoxyglucose uptake at PET-CT scan.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Department of Pediatrics, Medical University of Innsbruck, 6020 Innsbruck, Austria.
Immunosenescence, the age-related decline in immune function, is a complex biological process with profound implications for health and longevity. This phenomenon, characterized by alterations in both innate and adaptive immunity, increases susceptibility to infections, reduces vaccine efficacy, and contributes to the development of age-related diseases. At the cellular level, immunosenescence manifests as decreased production of naive T and B cells, accumulation of memory and senescent cells, thymic involution, and dysregulated cytokine production.
View Article and Find Full Text PDFMol Oncol
January 2025
Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece.
Rejuvenation of elementary immune system components has emerged as a promising strategy to deal with increased susceptibility to infections, cancers, autoimmune disorders, and low efficacy to vaccines, frequently accompanying aging. In this context, the thymus has gained significant attention. A recent study by Santamaria et al.
View Article and Find Full Text PDFJ Leukoc Biol
January 2025
Department of Biochemistry and Microbiology, Faculty of Science, University of Victoria, Victoria BC, Canada.
The thymus is a primary lymphoid organ where major types of T lymphocytes undergo essential developmental processes. Eosinophils are among the cell types present in microenvironments within the thymus, and perhaps surprisingly, the role of thymic eosinophils, especially during homeostatic conditions, remains unclear. Major physiological events impact thymic organization and function throughout life: including age-related involution, pregnancy, and exposure to chemotherapy or radiation.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Department of Biological Sciences, Kean University, Union, NJ 07083, USA.
Immunosenescence, a systematic reduction in the immune system connected with age, profoundly affects the health and well-being of elderly individuals. This review outlines the hallmark features of immunosenescence, including thymic involution, inflammaging, cellular metabolic adaptations, and hematopoietic changes, and their impact on immune cells such as macrophages, neutrophils, T cells, dendritic cells, B cells, and natural killer (NK) cells. Thymic involution impairs the immune system's capacity to react to novel antigens by reducing thymopoiesis and shifting toward memory T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!