The circulatory half-life of recombinant therapeutic proteins is an important pharmacokinetic attribute because it determines the dosing frequency of these drugs, translating directly to treatment cost. Thus, recombinant therapeutic glycoproteins such as monoclonal antibodies have been chemically modified by various means to enhance their circulatory half-life. One approach is to manipulate the N-glycan composition of these agents. Among the many glycan constituents, sialic acid (specifically, N-acetylneuraminic acid) plays a critical role in extending circulatory half-life by masking the terminal galactose that would otherwise be recognised by the hepatic asialoglycoprotein receptor (ASGPR), resulting in clearance of the biotherapeutic from the circulation. This review aims to provide an illustrative overview of various strategies to enhance the pharmacokinetic/pharmacodynamic properties of recombinant therapeutic proteins through manipulation of their sialic acid content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2023.114757 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!