The ability of the brain to generate complex spatiotemporal patterns with specific timings is essential for motor learning and temporal processing. An approach that can model this function, using the spontaneous activity of a random neural network (RNN), is associated with orbital instability. We propose a simple system that learns an arbitrary time series as the linear sum of stable trajectories produced by several small network modules. New finding in computer experiments is that the trajectories of the module outputs are orthogonal to each other. They created a dynamic orthogonal basis acquiring a high representational capacity, which enabled the system to learn the timing of extremely long intervals, such as tens of seconds for a millisecond computation unit, and also the complex time series of Lorenz attractors. This self-sustained system satisfies the stability and orthogonality requirements and thus provides a new neurocomputing framework and perspective for the neural mechanisms of motor learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2023.04.006 | DOI Listing |
Cogn Emot
January 2025
Department of Psychology, Edge Hill University, Ormskirk, United Kingdom.
The present study investigated the influence of emotional stimuli in the flanker task. In six experiments, separate influences of anticipating and reacting to valence-laden stimuli (affective pictures or facial expressions) on the flanker effect and its sequential modulation (also known as conflict adaptation) were examined. The results showed that there was little evidence that emotional stimuli influenced cognitive control when positive and negative stimuli appeared randomly during the flanker task.
View Article and Find Full Text PDFPLoS One
December 2024
College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, China.
The clogging performance of single-winged labyrinth drip irrigation tapes is influenced by a variety of factors during the muddy fertilizer water irrigation process. In this paper, we designed a uniform orthogonal test to study the effects of fertilizer concentration, sediment content and working pressure on the clogging of single-wing labyrinth drip irrigation tapes. The observed data from the experiment were analysed and calculated using range analysis, variance analysis, and main-effect multiple comparison analysis, then the optimal working conditions were determined.
View Article and Find Full Text PDFParasit Vectors
December 2024
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
Background: Echinococcosis is a zoonotic disease caused by an Echinococcus tapeworm infection. While diagnostic methods for humans often rely on ultrasound imaging and immunodiagnostic techniques, diagnosis in intermediate hosts typically has no widely used diagnostic markers, hampering disease control efforts.
Methods: The differences in serum metabolites of sheep infected with Echinococcus granulosus and a control group were analyzed using ultrahigh-performance liquid chromatography (UHPLC) separation with tandem mass spectrometry (MS/MS) detection.
Math Med Biol
December 2024
Escuela de Ingeniería Civil Informática, Universidad de Valparaíso, General Cruz 222, Valparaíso, Chile.
The linear functional analysis, historically founded by Fourier and Legendre (Fourier's supervisor), has provided an original vision of the mathematical transformations between functional vector spaces. Fourier, and later Laplace and Wavelet transforms, respectively defined using the simple and damped pendulum, have been successfully applied in numerous applications in Physics and engineering problems. However the classical pendulum basis may not be the most appropriate in several problems, such as biological ones, where the modelling approach is not linked to the pendulum.
View Article and Find Full Text PDFSci Total Environ
December 2024
Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, Beijing, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China.
Water use efficiency (WUE) is a tracer for plants on the trade-off exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere; therefore, a dynamic investigation of WUE and its driving factors will be of great significance to optimize water and carbon fitness and predict the plants' response to climate change. In our study, a modified water use efficiency model was proposed to improve the quantification of carbon and water processes by adding a photosynthesis-g simulation dependent on CO concentration and soil moisture to the photosynthetic transpiration model (noted as SMPTSB model). Actual measured water use efficiencies were respectively obtained by the gas exchange measurements (WUE) and the δC that defined as the carbon-heavy isotope of the water-soluble compound in leaves (WUE) of three-year tree saplings of Platycladus orientalis (L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!