Objective: Erchen decoction, a traditional Chinese medicine formula, can reduce the level of oxidative stress for the treatment of dyslipidemia phlegm-dampness retention syndrome (DPDRS); however, studies have not elucidated the mechanism underlying its metabolic action. Here, liquid chromatography-mass spectrometry (LC-MS)-based metabolomic techniques were utilized to characterize the in vivo effects of Erchen decoction in achieving reduction of oxidative stress levels and understand the potential metabolic mechanisms of action.
Methods: We constructed a DPDRS animal model using a multifactorial composite modeling approach, and Erchen decoction was administered by gavage. We employed LC-MS-based metabolomic techniques in combination with serum-associated factors, gene transcription, methylation detection, and hematoxylin and eosin staining.
Results: In this study, the constructed animal model of DPDRS had satisfactory quality. Erchen decoction treatment reduced the levels of low-density lipoprotein cholesterol, t total cholesterol and riglyceride; it improved the endothelial structure, increased levels of serum β-nicotinamide adenine dinucleotide phosphate and glutathione concentrations, increased aortic phosphoserine aminotransferase and phosphoserine phosphatase gene expression levels, and decreased aortic phosphoglycerate dehydrogenase methylation level. A total of 64 differential metabolites were obtained using LC-MS assay, and 34 differential metabolic pathways were obtained after enrichment.
Conclusions: Erchen decoction treatment of DPDRS mice reversed lipid indexes, improved vascular endothelial structure, increased serum and aortic anti-oxidative stress factor concentration and expression levels, and decreased methylation levels, thereby reducing oxidative stress and protecting vascular endothelium. Tricarboxylic acid cycle and metabolic pathways of serum glutamine, serine, tryptophan, pyrimidine, and pyruvate were the most relevant metabolic pathways involved in reducing oxidative stress levels by Erchen decoction during DPDRS treatment; especially, mitochondrial redox homeostasis maintenance in endothelial cells may be crucial. In this work, the therapeutic potential of Erchen decoction for reducing the oxidative stress level in DPDRS was demonstrated; however, its in-depth mechanism is worth further exploration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2023.154808 | DOI Listing |
Front Pharmacol
November 2024
First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
Hyperlipidemia, commonly referred to as dyslipidemia, is characterized by elevated serum cholesterol and/or triglyceride levels. This condition contributes significantly to the high mortality rates associated with cardiovascular diseases, posing a serious threat to global health. Although statins remain the predominant pharmacological treatment for hyperlipidemia, their associated side effects have led to a growing interest in alternative therapeutic approaches.
View Article and Find Full Text PDFMedicine (Baltimore)
August 2024
Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Integr Cancer Ther
June 2024
Otolaryngology-Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
This study investigated the effect of Erchen Decoction(ECD) on the prevention of non-alcoholic steatohepatitis(NASH) in mice and explored its possible mechanism, so as to provide scientific data for the clinical application of ECD in the prevention of NASH. C57BL/6 male mice were randomly divided into normal group(methionine and choline supplement, MCS), model group(methionine and choline deficient, MCD), low-dose ECD group(ECD_L, 6 g·kg~(-1)), medium-dose ECD group(ECD_M, 12 g·kg~(-1)), and high-dose ECD group(ECD_H, 24 g·kg~(-1)), with eight mice in each group. The MCS group was fed with an MCS diet, and the other groups were fed with an MCD diet.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
February 2024
Fujian University of Traditional Chinese Medicine Fuzhou 350122, China.
This study aims to investigate the effect of Erchen Decoction(ECD) on liver mitochondrial function in mice with a high-fat diet and its possible mechanism. A total of sixty C57BL/6J mice were randomly divided into a normal group, high-fat group, ECD group, mTORC1 activator(MHY) group, ECD+MHY group, and polyene phosphatidyl choline(PPC) group, with 10 rats in each group. The normal group was given a normal diet, and the other groups were fed a high-fat diet for 20 weeks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!