One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi-functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL ) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti-tumor therapy. The CQDs are synthesized from a plant-inspired bioactive molecule, 1, 3, 5-trihydroxybenzene. The 3D printed GelMA-CQDs hydrogels display typical shear-thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti-inflammatory genes (e.g., IL-4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel-like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra-red (NIR) responsive properties under 808 nm NIR light (1.0 W cm ) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA-CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.202300096DOI Listing

Publication Analysis

Top Keywords

bone regeneration
8
traumatic tissue
8
tissue regeneration
8
bioprinted nanoengineered
4
hydrogel
4
nanoengineered hydrogel
4
hydrogel photoactivated
4
photoactivated drug
4
drug delivery
4
delivery tumor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!