As the first clinically translated machine-neural interface, cochlear implants (CI) have demonstrated much success in providing hearing to those with severe to profound hearing loss. Despite their clinical effectiveness, key drawbacks such as hearing damage, partly from insertion forces that arise during implantation, and current spread, which limits focussing ability, prevent wider CI eligibility. In this review, we provide an overview of the anatomical and physical properties of the cochlea as a resource to aid the development of accurate models to improve future CI treatments. We highlight the advancements in the development of various physical, animal, tissue engineering, and computational models of the cochlea and the need for such models, challenges in their use, and a perspective on their future directions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264527PMC
http://dx.doi.org/10.1007/s10439-023-03192-3DOI Listing

Publication Analysis

Top Keywords

models cochlea
8
models
4
cochlea cochlear
4
cochlear implant
4
implant review
4
review clinically
4
clinically translated
4
translated machine-neural
4
machine-neural interface
4
interface cochlear
4

Similar Publications

Cochlear implants are well established devices for treating severe hearing loss. However, due to the trauma caused by the insertion of the electrode and the subsequent formation of connective tissue, their clinical effectiveness varies. The aim of the current study was to achieve a long-term reduction in connective tissue growth and impedance by combining surface patterns on the electrode array with a poly-L-lactide coating containing 20% diclofenac.

View Article and Find Full Text PDF

Background: Segmentation of the cochlea in temporal bone computed tomography (CT) is the basis for image-guided otologic surgery. Manual segmentation is time-consuming and laborious.

Purpose: To assess the utility of deep learning analysis in automatic segmentation of the cochleae in temporal bone CT to differentiate abnormal images from normal images.

View Article and Find Full Text PDF

Can a Cochlear Implant Be Used as an Electrical Impedance Tomography Device?

Int J Numer Method Biomed Eng

January 2025

Bioengineering, Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Gauteng, South Africa.

The imaging of the live cochlea is a challenging task. Regardless of the quality of images obtained from modern clinical imaging techniques, the internal structures of the cochlea mainly remain obscured. Electrical impedance tomography (EIT) is a safe, low-cost alternative medical imaging technique with applications in various clinical scenarios.

View Article and Find Full Text PDF

DFNA1 (deafness, nonsyndromic autosomal dominant 1), initially identified as nonsyndromic sensorineural hearing loss, has been associated with an additional symptom: macrothrombocytopenia. However, the timing of the onset of hearing loss (HL) and thrombocytopenia has not been investigated, leaving it unclear which occurs earlier. Here, we generated a knock-in (KI) DFNA1 mouse model, diaphanous-related formin 1 (DIA1), in which Aequorea coerulescens green fluorescent protein (AcGFP)-tagged human DIA1(p.

View Article and Find Full Text PDF

Hair cell (HC) loss, frequently induced by ototoxic agents such as gentamicin, leads to irreversible hearing loss. Because of the restricted regenerative capabilities of the mammalian inner ear, the exploration of therapeutic strategies to restore damaged HCs is critically needed. Recombinant human Neuritin (rhNeuritin), a neurotrophic factor with established roles in promoting cell survival and regeneration across various systems, presents itself as a promising therapeutic candidate for HC repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!