The failure of current sanitation practices requires the development of effective solutions for microbial control. Although combinations using antibiotics have been extensively studied to look for additive/synergistic effects, biocide combinations are still underexplored. This study aims to evaluate the antimicrobial effectiveness of dual biocide and triple biocide/phytochemical combinations, where phytochemicals are used as quorum sensing (QS) inhibitors. The biocides selected were benzalkonium chloride (BAC) and peracetic acid (PAA) - as commonly used biocides, and glycolic acid (GA) and glyoxal (GO) - as alternative and sustainable biocides. Curcumin (CUR) and 10-undecenoic acid (UA) were the phytochemicals selected, based on their QS inhibition properties. A checkerboard assay was used for the screening of chemical interactions based on the cell growth inhibitory effects against Bacilluscereus and Pseudomonasfluorescens. It was observed that dual biocide combinations resulted in indifference, except the PAA + GA combination, which had a potential additive effect. PAA + GA + CUR and PAA + GA + UA combinations also triggered additive effects. The antimicrobial effects of the combinations were further evaluated on the inactivation of planktonic and biofilm cells after 30 min of exposure. These experiments corroborated the checkerboard results, in which PAA + GA was the most effective combination against planktonic cells (additive/synergistic effects). The antimicrobial effects of triple combinations were species- and biocide-specific. While CUR only potentiate the antimicrobial activity of GA against B.cereus, GA + UA and PAA + GA + UA combinations promoted additional antimicrobial effects against both bacteria. Biofilms were found to be highly tolerant, with modest antimicrobial effects being observed for all the combinations tested. However, this study demonstrated that low doses of biocides can be effective in bacterial control when combining biocides with a QS inhibitor, in particular, the combination of the phytochemical UA (as a QS inhibitor) with GA and PAA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2023.112680 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!