On exploratory class missions, such as a mission to Mars, astronauts will be exposed to doses of particles of high energy and charge and protons up to 30 - 40 cGy. These exposures will most likely occur at random intervals across the estimated 3-yr duration of the mission. As such, the possibility of an interaction between particles must be taken into account: a prior subthreshold exposure to one particle may prevent or minimize the effect of a subsequent exposure (adaptation), or there may be an additive effect such that the prior exposure may sensitize the individual to a subsequent exposure of the same or different radiations. Two identical replications were run in which rats were exposed to a below threshold dose of He particles and 2, 24 or 72 h later given either a second below threshold or an above threshold dose of He particles and tested for performance on an operant task. The results indicate that preexposure to a subthreshold dose of He particles can either sensitize or attenuate the effects of the subsequent dose, depending upon the interval between exposures and the doses. These results suggest that exposure to multiple doses of heavy particles may have implications for astronaut health on exploratory class missions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lssr.2023.03.003 | DOI Listing |
Assay Drug Dev Technol
January 2025
Institute of Pharmaceutical Research, GLA University, Mathura, India.
Inhal Toxicol
January 2025
Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
: Pulmonary exposure to emissions from manipulating solid surface composite (SSC) materials has been associated with adverse health effects in humans and laboratory animals. Previous and investigations of SSC toxicity have been limited by particle delivery methods that do not fully recapitulate the workplace environment. This study sought to determine the acute SSC-induced pulmonary responses whole-body inhalation exposure.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
January 2025
Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland.
Background And Purpose: In proton therapy, a relative biological effectiveness (RBE) of 1.1 is used to convert proton dose into an equivalent photon dose. However, RBE varies with tissue type, fraction dose, and beam quality parameters beyond dose such as linear energy transfer (LET) raising concerns about increased local effectiveness and potential toxicity.
View Article and Find Full Text PDFEnviron Health (Wash)
January 2025
Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 2699 Gaoke Road, Shanghai 201204, China.
Previous toxicological research has suggested the potential neurotoxicity of ultrafine particulate matter (UFP, particles ≤0.1 μm in diameter). However, evidence from human beings, particularly regarding the neurodevelopmental impacts of UFP, is still limited.
View Article and Find Full Text PDFDrug Chem Toxicol
January 2025
Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
Daily contact with considerable amounts of polystyrene nanoparticles (PSNPs) may cause harmful effects on the living organisms, through mechanisms that are not fully understood. The study aimed to evaluate the cytotoxic and genotoxic effects of PSNPs (size 200 nm and 40 nm) in mesenchymal stem cells (MSCs). In order to estimate cellular uptake and retention of nanoplastics, PSNP-treated cells have been analyzed by transmission electron microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!