The Metal-binding Protein Atlas (MbPA): An Integrated Database for Curating Metalloproteins in All Aspects.

J Mol Biol

The Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China. Electronic address:

Published: July 2023

Metal-binding proteins are essential for the vital activities and engage in their roles by acting in concert with metal cations. MbPA (The Metal-binding Protein Atlas) is the most comprehensive resource up to now dedicated to curating metal-binding proteins. Currently, it contains 106,373 entries and 440,187 sites related to 54 metals and 8169 species. Users can view all metal-binding proteins and species-specific proteins in MbPA. There are also metal-proteomics data that quantitatively describes protein expression in different tissues and organs. By analyzing the data of the amino acid residues at the metal-binding site, it is found that about 80% of the metal ions tend to bind to cysteine, aspartic acid, glutamic acid, and histidine. Moreover, we use Diversity Measure to confirm that the diversity of metal-binding is specific in different area of periodic table, and further elucidate the binding modes of 19 transition metals on 20 amino acids. In addition, MbPA also embraces 6855 potential pathogenic mutations related to metalloprotein. The resource is freely available at http://bioinfor.imu.edu.cn/mbpa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2023.168117DOI Listing

Publication Analysis

Top Keywords

metal-binding proteins
12
metal-binding protein
8
protein atlas
8
metal-binding
7
mbpa
4
atlas mbpa
4
mbpa integrated
4
integrated database
4
database curating
4
curating metalloproteins
4

Similar Publications

Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.

View Article and Find Full Text PDF

Predicting metal-binding proteins and structures through integration of evolutionary-scale and physics-based modeling.

J Mol Biol

January 2025

Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA; Biology Department, Brookhaven National Laboratory, Upton, NY, USA. Electronic address:

Metals are essential elements in all living organisms, binding to approximately 50% of proteins. They serve to stabilize proteins, catalyze reactions, regulate activities, and fulfill various physiological and pathological functions. While there have been many advancements in determining the structures of protein-metal complexes, numerous metal-binding proteins still need to be identified through computational methods and validated through experiments.

View Article and Find Full Text PDF

Epigallocatechin gallate (EGCg), an abundant phytochemical in green tea, is an antioxidant that also binds proteins and complex metals. After gastrointestinal absorption, EGCg binds to serum albumin in the hydrophobic pocket between domains IIA and IIIA and overlaps with the Sudlow I site. Serum albumin also has two metal binding sites, a high-affinity N-terminal site (NTS) site that selectively binds Cu(II), and a low-affinity, less selective multi-metal binding site (MBS).

View Article and Find Full Text PDF

Precise binding free-energy predictions for ligands targeting metalloproteins, especially zinc-containing histone deacetylase (HDAC) enzymes, require specialized computational approaches due to the unique interactions at metal-binding sites. This study evaluates a docking algorithm optimized for zinc coordination to determine whether it could accurately differentiate between protonated and deprotonated states of hydroxamic acid ligands, a key functional group in HDAC inhibitors (HDACi). By systematically analyzing both protonation states, we sought to identify which state produces docking poses and binding energy estimates most closely aligned with experimental values.

View Article and Find Full Text PDF

Background/objectives: Frailty is a complex geriatric syndrome resulting in decreased physiological reserve. While genetics plays a role, the underlying mechanisms remain unsolved. Metallothioneins (MTs), metal-binding proteins with high affinity for zinc, an essential mineral for many physiological functions, are involved in processes including oxidative stress and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!