Wetland degradation through a diverse spectrum of anthropogenic stressors worldwide has taken a heavy toll on the health of wetlands. This study examined the health of a semi-urban wetland Bodsar, located in the Kashmir Himalaya using multicriteria analysis approach assimilating data on land use land cover (LULC), landscape fragmentation, soil loss, and demography. Wetland and catchment-scale land system changes from 1980 to 2022 were assessed using high-resolution imagery. Fragmentation of the natural landscape was assessed using the Landscape Fragmentation Tool (LFT) and soil loss was assessed using the Revised Universal Soil Loss Equation (RUSLE). In addition, the water quality was examined at 12 sites distributed across the wetland using standard methods. Satellite data revealed 12 categories of land use with areas under exposed rock, orchards, built-up and sparse forest having increased by 1005%, 623%, 274%, and 37% respectively. LFT indicated that the core (>500 acres) and core (<250 acres) zones decreased by approximately 16% and 64%, respectively, whereas the areas under the perforated, edge and patch classes increased significantly. RUSLE estimates show a ∼77% increase in soil erosion from 116.26 Mg a in 1980 to 205.68 Mg a in 2022, mostly due to changes in LULC. Total phosphorus (0.195-2.04 mg L ), nitrate nitrogen (0.306-2.79 mg L ), and total dissolved solids (543-774 mg L) indicated nutrient enrichment of the wetland influenced by anthropogenically-driven land system changes. The wetland degradation index revealed that 21% of the wetland experienced high-to-severe degradation, 62% experienced moderate degradation, and 17% did not face any significant degradation pressure. The novel GIS-based approach adopted in this study can act as a prototype for ascertaining the catchment-scale degradation of wetlands worldwide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.115967 | DOI Listing |
PLoS One
January 2025
College of Agriculture, Guizhou University, Guiyang, China.
The impact of straw and biochar on carbon mineralization and the function of carbon cycle genes in paddy soil is important for soil nutrient management and the transformation of carbon pools. This research is based on a five-year field experiment with four treatments: no fertilizer application (CK); chemical fertilizer only (NPK); straw combined with chemical fertilizer (NPKS); and biochar combined with chemical fertilizer (NPKB). By integrating indoor mineralization culture with metagenomic approaches, we analyzed the response of organic carbon mineralization and carbon cycle genes in typical paddy soil from Guizhou Province, China, to different fertilization treatments.
View Article and Find Full Text PDFSci Rep
January 2025
Shaanxi Province Key Laboratory of Bio-resources, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China.
Soil salinization becomes serious under climate change and human activities. Although the residue decomposition contributes lots to soil carbon storage and fertility, the decomposition process and microbial mechanisms on saline-alkali soils are still vague facing climate change. We measured the mass loss of residue (0, 4, 8, 15, 30, 60 and 90 days), CO emission (every two days), and the microbial community structure (0, 4, 15 and 90 days) by using the litter bag method, gas chromatography and high-throughput sequencing technology during the residue decomposition (90 days) in a saline-alkali soil from the Tarim River Basin, China under various temperatures (15 °C, 25 °C, 35 °C) and soil moisture levels (20%, 40%, 60% water holding capacity).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Lower atmospheric pressure affects biologically relevant physical parameters such as gas partial pressure and concentration, leading to increased water vapor diffusivity and greater soil water content loss through evapotranspiration. This might impact plant photosynthetic activity, resource allocation, water relations, and growth. However, the direct impact of low air pressure on plant physiology is largely unknown.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Civil, Environmental, and Mining Engineering, University of Western Australia, Perth, Western Australia, Australia.
Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
Urban expansion has triggered significant changes in soil organic carbon (SOC), profoundly affecting the global carbon cycle. The accurate prediction of the global distribution of urban SOC and assessment of the impact of future urban expansion on SOC are essential for urban soil carbon management. By using data from 377 urban locations, this study estimated the global distribution of urban SOC and projected future SOC changes under two socioeconomic scenarios: SSP126 and SSP585.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!