Chaperone-directed ribosome repair after oxidative damage.

Mol Cell

Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA; HHMI Faculty Scholar, Chevy Chase, MD 20815, USA. Electronic address:

Published: May 2023

Because of the central role ribosomes play for protein translation and ribosome-mediated mRNA and protein quality control (RQC), the ribosome pool is surveyed and dysfunctional ribosomes degraded both during assembly, as well as the functional cycle. Oxidative stress downregulates translation and damages mRNAs and ribosomal proteins (RPs). Although damaged mRNAs are detected and degraded via RQC, how cells mitigate damage to RPs is not known. Here, we show that cysteines in Rps26 and Rpl10 are readily oxidized, rendering the proteins non-functional. Oxidized Rps26 and Rpl10 are released from ribosomes by their chaperones, Tsr2 and Sqt1, and the damaged ribosomes are subsequently repaired with newly made proteins. Ablation of this pathway impairs growth, which is exacerbated under oxidative stress. These findings reveal an unanticipated mechanism for chaperone-mediated ribosome repair, augment our understanding of ribosome quality control, and explain previous observations of protein exchange in ribosomes from dendrites, with broad implications for aging and health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164075PMC
http://dx.doi.org/10.1016/j.molcel.2023.03.030DOI Listing

Publication Analysis

Top Keywords

ribosome repair
8
quality control
8
oxidative stress
8
rps26 rpl10
8
ribosomes
5
chaperone-directed ribosome
4
repair oxidative
4
oxidative damage
4
damage central
4
central role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!