A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Methyl jasmonate redirects the dynamics of carbohydrates and amino acids toward the lignans accumulation in Linum album cells. | LitMetric

AI Article Synopsis

  • Linum album (L. album) accumulates lignans like podophyllotoxin (PTOX) when treated with varying concentrations of methyl jasmonate (MeJA), affecting free sugars and amino acids.
  • At 50μM MeJA, hydrogen peroxide levels increase, but decline at higher concentrations, while levels of nitric oxide and lipid peroxidation peak at 200μM, indicating changes in cellular oxidative status.
  • The study shows an increase in antioxidant enzyme activity and variations in amino acid levels alongside the synthesis of phenolic compounds, with significant lignan production at 50μM MeJA, highlighting the compound's role in redirecting resources toward lignan biosynthesis in L. album cells.

Article Abstract

Linum album accumulates lignans e.g., podophyllotoxin (PTOX) and 6-methoxy podophyllotoxin (6MPTOX). This study was aimed to figure out how different concentrations of MeJA (0, 50, 100, 150, and 200 μM) by affecting on free sugars and amino acids contents induce lignans accumulation in L. album cells. Results revealed that hydrogen peroxide (HO) content increased at 50μM, while it decreased at the high levels of MeJA (150 and 200 μM). Also, increasing trend of nitric oxide (NO) and lipid peroxidation levels peaked at 200 μM MeJA. An increased antioxidant enzymes activity was also observed in the treated cells. Moreover, an increase in rhamnose/xylose, glucose, and mannose was detected at 150 and 200 μM MeJA compared to the control. These compounds provide energy source and carbon skeleton for amino acids biosynthesis. Our results emphasized variations in amino acids levels in the presence of MeJA, where Phe level shifts along with synthesizing phenolics. Likewise, MeJA treatment switch on phenyl-ammonia lyase (PAL) and tyrosine-ammonia lyase (TAL) activities that regenerate phenolic compounds. Changes in phenolic acids (cinnamic, coumaric, caffeic, ferulic, and salicylic acid) and flavonoids (catechin, vitexin, myricetin, and kaempferol) were observed under MeJA treatment. Eventually, MeJA induced lignans production except for lariciresinol (LARI), so that the highest amounts of PTOX and 6MPTOX were analyzed at 50 μM, which were 4 and 5 time of control, respectively. Conclusively, it can be suggested that MeJA-induced oxidative status change redirects free sugars and amino acids toward the production of phenolic compounds especially lignans in L. album cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2023.107677DOI Listing

Publication Analysis

Top Keywords

amino acids
20
album cells
12
lignans accumulation
8
linum album
8
meja
8
150 200 μm
8
free sugars
8
sugars amino
8
200 μm meja
8
meja treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!