Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
CO-switchable surfactants have selective surface-activity, which can be activated or deactivated either by adding or removing CO from the solution. This feature enables us to use them in the fabrication of responsive colloids, a group of dispersed systems that can be controlled by changing the environmental conditions. In chemical processes, including extraction, reaction, or heterogeneous catalysis, colloids are required in some specific steps of the processes, in which maximum contact area between immiscible phases or reactants is desired. Afterward, the colloids must be broken for the postprocessing of products, solvents, and agents, which can be facilitated by using CO-switchable surfactants in surfactant-stabilized colloids. These surfactants are mainly cationic and can be activated by the protonation of a nitrogen-containing group upon sparging CO gas. Also, CO-switchable superamphiphiles can be formed by non-covalent bonding between components at least one of which is CO-switchable. So far, CO-switchable surfactants have been used in CO-switchable spherical and wormlike micelles, vesicles, emulsions, foams, and Pickering emulsions. Here, we review the fabrication procedure, chemical structure, switching scheme, stability, environmental conditions, and design philosophy of such responsive colloids. Their fields of application are wide, including emulsion polymerization, catalysis, soil washing, drug delivery, extraction, viscosity control, and oil transportation. We also emphasize their application for the CO-assisted enhanced oil recovery (EOR) process as a promising approach for carbon capture, utilization, and storage to combat climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2023.102907 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!