Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Natural protein-based delivery systems have received special interest over the last few years. Different carriers are already developed in the food industry to protect, encapsulate and deliver bioactive compounds. Rice bran protein (RBP) is currently used as a carrier in encapsulating bioactives due to its excellent functional properties, great natural value, low price, good biodegradability, and biocompatibility. Recently, RBP-based carriers including emulsions, microparticles, nanoparticles, nanoemulsions, liposomes, and core-shell structures have been studied extensively in the literature. This study reviews the important characteristics of RBP in developing bioactive delivery systems. The recent progress in various modification approaches for improving RBP properties as carriers along with different types of RBP-based bioactive delivery systems is discussed. In the final part, the bioavailability and release profiles of bioactives from RBP-based carriers and the recent developments are described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.136121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!