Proanthocyanidins (PA) form poorly digestible complexes with starch. The study examined amylase degradation mechanism and hydrothermal stability of starch-PA complexes. Sorghum-derived PA was complexed with wheat starch, reconstituted into flour (10% gluten added) and processed into crackers and pancakes. In vitro digestion profile of the complexes and products were characterized. The starch-PA complexes retained more (34-84%) fragments with degree of polymerization (DP) > 6,000 after 120 min digestion than controls (0-21%). Debranching further revealed higher retention of DP 11 - 30 chains in the digested starch-PA complexes than controls, suggesting amylopectin complexation contributed to reduced starch digestion. Starch-PA complexes retained reduced digestibility (50-56% higher resistant starch vs controls) in the cracker, but not pancake model. However, removing gluten from the pancake formulation restored the reduced digestibility of the starch-PA complexes. The starch-PA complexes are stable to hydrothermal processing, but can be disrupted by hydrophobic gluten proteins under excess moisture conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.136182 | DOI Listing |
Int J Biol Macromol
March 2024
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China. Electronic address:
Recent research emphasizes the growing importance of starch-lipid complexes due to their anti-digestibility ability, prompting a need to explore the impact of different starch sources and preparation methods on their properties. In this study, starch-palmitic acid (PA) complexes were prepared by three different starches including Tartary buckwheat starch (TBS), potato starch (PTS), and pea starch (PS) by heating treatment (HT) and autoclaving treatment (AT), respectively, and their physicochemical property and in vitro digestibility were systematically compared. The formation of the starch-PA complex was confirmed through various characterization techniques, including scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray diffraction.
View Article and Find Full Text PDFFood Chem
September 2023
Texas A&M University, Department of Food Science & Technology, College Station, TX 77843, USA. Electronic address:
Proanthocyanidins (PA) form poorly digestible complexes with starch. The study examined amylase degradation mechanism and hydrothermal stability of starch-PA complexes. Sorghum-derived PA was complexed with wheat starch, reconstituted into flour (10% gluten added) and processed into crackers and pancakes.
View Article and Find Full Text PDFJ Agric Food Chem
December 2021
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
The present study investigated the effect of octenyl succinic anhydride (OSA) modification of starch on the formation of starch-lipid complexes. The complexing index (CI) showed that native maize starch (NMS) formed more complexes with monopalmityl glycerol (MPG) than with palmitic acid (PA), whereas dipalmityl glycerol (DPG) was not effective in forming complexes with NMS. After OSA modification, the complexation between OSA-starch and lipids was greatly enhanced, especially for PA and DPG, and the CI values increased from 79.
View Article and Find Full Text PDFFood Sci Biotechnol
April 2017
1Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Korea.
Amylosucrase-treated waxy corn starch (AS) was produced to extend the chain length of amylopectin to a great extent in comparison to its native chain length. An amylopectin-palmitic acid (PA) complex was prepared by heat-treating (121°C) a starch/PA mixture and its subsequent further incubation (95°C, 24 h); moreover, its structure and digestibility were studied. Unmodified waxy starch could not complex at all, whereas elongation due to amylosucrase modification allowed amylopectin to form a complex with PA to a small extent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!